Wednesday, May 21, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

In a New AI Paper, CMU and Google Researchers Redefine Language Model Outputs: How Delaying Responses with Pause Tokens Boosts Performance on QA and Reasoning Tasks

October 9, 2023
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Tokens are generated in rapid succession using causal language models based on transformers. The model takes in the K preceding tokens and then iteratively calculates K intermediate vectors in each hidden layer to produce the (K + 1)th token. The module operates on the previous layer’s output vectors, and each vector in itself is the output of a module. Despite the complexity of the entire procedure, one unusual restriction must be met: the number of operations required to determine the next token is constrained by the number of tokens already viewed. 

A recent study by Carnegie Mellon University and Google investigated the strategy of adding fake tokens to the input of a decoder-only model to postpone its output. In this work, they decided to pick a (learnable) pause token and append it to the input in a sequence of one or more times. To obtain the model’s answer after the last token has been seen, they simply ignore the matching outputs until then.

Importantly, the researchers think about inserting such delays at inference and during downstream fine-tuning and pretraining. What effect this seemingly little adjustment might have in the real world cannot be known now. The delay creates a potentially “wider” computational channel, which the Transformer may use to its advantage. A simpler result could be that the model ignores the tokens’ ability to cause delays and continues running. After all, neither the tokens themselves nor the small number of new parameters introduced by embedding a single token are adequate to encode any additional information from the training data. These meaningless tokens may obscure useful signals and weaken the model. 

The team undertook an empirical assessment to understand the outcome of introducing (appended) delays in all training and inference phases. They examine pause training on a 1B and 130M parameter decoder-only model initially trained on C4 (Raffel et al., 2019) and then fine-tuned on nine downstream tasks covering extractive question response, reasoning, general understanding, and fact recall. Most significantly, this method raises the 1B model’s exact match score by 18% on the SQuAD extractive question-answering task. Similarly, they observed an 8% increase in the general understanding task of CommonSense QA and a 1% accuracy gain on the reasoning task of GSM8k over the standard model’s accuracy of 7.5%. 

On the other hand, when tokens are introduced only during the final fine-tuning stage (using the baseline pretrained model), improvements are seen in just a small fraction of cases. The team also conducted a series of key ablations, including:

Discovering that appending tokens is generally superior to prepending them.

Discovering that there is an optimal number of tokens for any downstream task.

Discovering that decreasing the number of inference-time tokens results in a graceful performance degradation. 

The team believes that the essential next step would be developing ways to directly make delays helpful on a normal pretrained model. They envision several new theoretical and applied research directions opening up thanks to their work expanding the paradigm of delayed next-token prediction.

Check out the Paper. All Credit For This Research Goes To the Researchers on This Project. Also, don’t forget to join our 31k+ ML SubReddit, 40k+ Facebook Community, Discord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more.

If you like our work, you will love our newsletter..

We are also on WhatsApp. Join our AI Channel on Whatsapp..

Dhanshree Shenwai is a Computer Science Engineer and has a good experience in FinTech companies covering Financial, Cards & Payments and Banking domain with keen interest in applications of AI. She is enthusiastic about exploring new technologies and advancements in today’s evolving world making everyone’s life easy.

▶️ Now Watch AI Research Updates On Our Youtube Channel [Watch Now]



Source link

Tags: BoostsCMUDelayingGooglelanguagemodelOutputsPaperPausePerformanceReasoningRedefineResearchersResponsestasksTokens
Previous Post

Tutorial – SAP HANA Cloud, Create a UI with SAP Cloud Application Programming Model

Next Post

India mulls imposing 25% duty on molasses exports

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
India mulls imposing 25% duty on molasses exports

India mulls imposing 25% duty on molasses exports

AWS Weekly Roundup: AWS Control Tower, Amazon Bedrock, Amazon OpenSearch Service, and More (October 9, 2023)

AWS Weekly Roundup: AWS Control Tower, Amazon Bedrock, Amazon OpenSearch Service, and More (October 9, 2023)

Enabling more value in your Service Now Deployments with Kore.ai’s IT Assist

Enabling more value in your Service Now Deployments with Kore.ai’s IT Assist

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
How To Build A Quiz App With JavaScript for Beginners

How To Build A Quiz App With JavaScript for Beginners

February 22, 2024
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In