Friday, May 9, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Unmasking the Web’s Tower of Babel: How Machine Translation Floods Low-Resource Languages with Low-Quality Content

January 17, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Much of the modern Artificial Intelligence (AI) models are powered by enormous training data, ranging from billions to even trillions of tokens, which is only possible with web-scraped data. This web content is translated into numerous languages, and the quality of these multi-way translations suggests they were primarily created using Machine Translation (MT). This research paper studies the impact low-cost MT has on the web and on large multi-lingual language models (LLMs).

Prior works have identified MT in the web corpora, but only a few have used multi-way parallelism in their study, and the authors of this research paper have used the same in their work. The researchers created translation tuples of two or more sentences in different languages, each corresponding to translations of one another, and denoted this dataset as Multi-Way ccMatrix (MWccMatrix).

The process involves iterating through all pairs of sentences in ccMatrix (created by embedding web-scraped sentences into multi-lingual space), prioritizing them based on the LASER margin score, and adding new pairs to the MWccMatrix dataset. The researchers use a method that deduplicates the corpus, i.e., it adds each distinct sentence only once. They avoid repeating sentences in the dataset but allow near-duplicates, i.e., multiple sentences of the same language differing mainly in punctuation or capitalization.

Their analysis suggests that much of the web is MT. They compared the total number of unique sentences in the MWccMatrix to that in the Common Crawl dataset. They found that languages like English and French have a high percentage of unique sentences with at least one translation (9.4% and 17.5% respectively). They also found that translations on the web are highly multi-way parallel, with the low-resource languages having an average parallelism of 8.6. Additionally, these multi-way translations have a significantly lower quality as compared to 2-way parallel translations.

Furthermore, the findings show that multi-way parallel data generally consists of shorter, more predictable sentences and has a different topic distribution. The data is more likely to be from the conversation and opinion topic. This particularly affects the fluency and accuracy of multi-lingual LLMs and leads to more hallucinations and bias. The researchers suggest that the selection bias is because of the low-quality content that is likely produced to generate ad revenue. Data is translated into many lower-resource languages to target the audience for the same reason, which affects its quality.

In conclusion, the researchers also pointed out some methods to tackle the problem of MT output in training data. They suggest that MT detection, along with filtering bitext, should also be used in filtering text in lower resource languages. This would help detect low-quality data, especially in lower resource languages, prevent hallucinations and bias, and eventually lead to a better performance of multi-lingual LLMs.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our 36k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our Telegram Channel

Asif Razzaq is the CEO of Marktechpost Media Inc.. As a visionary entrepreneur and engineer, Asif is committed to harnessing the potential of Artificial Intelligence for social good. His most recent endeavor is the launch of an Artificial Intelligence Media Platform, Marktechpost, which stands out for its in-depth coverage of machine learning and deep learning news that is both technically sound and easily understandable by a wide audience. The platform boasts of over 2 million monthly views, illustrating its popularity among audiences.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



Source link

Tags: BabelContentFloodsLanguagesLowQualityLowResourceMachineTowerTranslationUnmaskingWebs
Previous Post

How to Use a Signer in Ethers.js?

Next Post

Is Flutter Good for Web Development? Pros and Cons

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Is Flutter Good for Web Development? Pros and Cons

Is Flutter Good for Web Development? Pros and Cons

IEX shares nosedive amid market coupling fears

IEX shares nosedive amid market coupling fears

Researchers from ETH Zurich and Google Introduce InseRF: A Novel AI Method for Generative Object Insertion in the NeRF Reconstructions of 3D Scenes

Researchers from ETH Zurich and Google Introduce InseRF: A Novel AI Method for Generative Object Insertion in the NeRF Reconstructions of 3D Scenes

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In