Friday, May 16, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

UCLA Researchers Introduce Group Preference Optimization (GPO): A Machine Learning-based Alignment Framework that Steers Language Models to Preferences of Individual Groups in a Few-Shot Manner

January 21, 2024
in AI Technology
Reading Time: 3 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Large Language Models (LLMs) are increasingly employed for various domains, with use cases including creative writing, chatbots, and semantic search. Many of these applications are inherently subjective and require generations catering to different demographics, cultural and societal norms, or individual preferences. Through their large-scale training, current language models are exposed to diverse data that allows them to represent many such opinions. However, expressing these diverse opinions requires steering the LLM generations to user requirements.

The researchers at the University of California introduced Group Preference Optimization (GPO), which signifies a pioneering approach to aligning large language models (LLMs) with the diverse preferences of user groups efficiently. This alignment is critical for applications involving subjective judgments across varied user demographics. The challenges associated with existing alignment algorithms, characterized by high costs and the need for extensive group-specific preference data and computational resources, are addressed by GPO.

The GPO framework incorporates an independent transformer module, enhancing the base LLM. This module is trained to predict the preferences of specific user groups for LLM-generated content. The parameterization of this module as an in-context autoregressive transformer facilitates few-shot learning, and its training is accomplished through meta-learning on multiple user groups.

Key components of GPO include leveraging few-shot learning to enable the model to adapt to group preferences with minimal data and utilizing meta-learning to train the independent transformer module on diverse user groups, allowing rapid adaptation to new preferences.

Empirical validation was conducted through rigorous evaluations using LLMs of varying sizes. Three human opinion adaptation tasks were considered: aligning with the preferences of US demographic groups, global countries, and individual users. GPO’s performance is compared with existing strategies like in-context steering and fine-tuning methods.

The findings demonstrate that GPO achieves more accurate alignment with group preferences and requires fewer group-specific preferences and reduced training and inference computing resources. This underscores GPO’s efficiency and effectiveness in comparison to existing approaches.

Overall, GPO presents a promising solution for efficiently aligning LLMs with the preferences of diverse user groups, making it particularly applicable to real-world scenarios where nuanced subjective judgments are essential. The emphasis on few-shot learning, meta-learning, and the incorporation of the independent transformer module distinguishes GPO from existing strategies.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our 36k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our Telegram Channel

\"\"

Arshad is an intern at MarktechPost. He is currently pursuing his Int. MSc Physics from the Indian Institute of Technology Kharagpur. Understanding things to the fundamental level leads to new discoveries which lead to advancement in technology. He is passionate about understanding the nature fundamentally with the help of tools like mathematical models, ML models and AI.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



Source link

Tags: AlignmentfewshotFrameworkGPOGroupGroupsIndividualIntroducelanguageLearningBasedMachineMannermodelsoptimizationPreferencePreferencesResearchersSteersUCLA
Previous Post

Researchers from the University of Washington and Allen Institute for AI Present Proxy-Tuning: An Efficient Alternative to Finetuning Large Language Models

Next Post

Kindred confirms takeover bid from FDJ By Reuters

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Kindred confirms takeover bid from FDJ By Reuters

Kindred confirms takeover bid from FDJ By Reuters

Hybrid Model Learning for Cardiovascular Biomarkers Inference

Hybrid Model Learning for Cardiovascular Biomarkers Inference

FastSR-NeRF: Improving NeRF Efficiency on Consumer Devices with A Simple Super-Resolution Pipeline

FastSR-NeRF: Improving NeRF Efficiency on Consumer Devices with A Simple Super-Resolution Pipeline

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
How To Build A Quiz App With JavaScript for Beginners

How To Build A Quiz App With JavaScript for Beginners

February 22, 2024
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In