Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Toward Responsible Innovation: Evaluating Risks and Opportunities in Open Generative AI

May 20, 2024
in AI Technology
Reading Time: 3 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Generative AI (Gen AI), capable of producing robust content based on input, is poised to impact various sectors like science, economy, education, and the environment. Extensive socio-technical research aims to understand the broad implications, acknowledging risks and opportunities. A debate surrounds the openness of Gen AI models, with some advocating for open release to benefit all. Regulatory developments, notably the EU AI Act and US Executive Order, highlight the need to assess risks and opportunities while questions regarding governance and systemic risks persist.

The discourse on open-sourcing generative AI is complex, examining broader impacts and specific debates. The research delves into benefits and risks across domains like science and education alongside implications of capability shifts. Discussions center on categorizing systems based on disclosure levels and addressing AI safety. While closed-source models still outperform open ones, the gap is narrowing.

Researchers from the University of Oxford, University of California, Berkeley, and other institutes advocate for responsible development and deployment of open-source Gen AI, drawing parallels with the success of open source in traditional software. The study delineates the development stages of Gen AI models and presents a taxonomy for openness, classifying models into fully closed, semi-open, and fully open categories. The discussion evaluates risks and opportunities in near to mid-term and long-term stages, emphasizing benefits like research empowerment and technical alignment while addressing existential and non-existential risks. Recommendations for policymakers and developers are provided to balance risks and opportunities, promoting appropriate legislation without stifling open-source development.

Researchers introduced a classification scale for evaluating the openness of components in generative AI pipelines. Components are categorized as fully closed, semi-open, or fully open based on accessibility. A point-based system evaluates licenses, distinguishing between highly restrictive and restriction-free ones. The analysis applies this framework to 45 high-impact Large Language Models (LLMs), revealing a balance between open and closed source components. The findings highlight the need for responsible open-source development to utilize advantages and mitigate risks effectively. Also, they emphasized the importance of reproducibility in model development.

The study adopts a socio-technical approach, contrasting the impacts of standalone open-source Generative AI models with closed ones across key areas. Researchers conduct a contrastive analysis, followed by a holistic examination of relative risks. The near to mid-term phase is defined, excluding dramatic capability changes. Challenges in assessing risks and benefits are discussed alongside potential solutions. The socio-technical analysis considers research, innovation, development, safety, security, equity, access, usability, and broader societal aspects. Open source’s benefits include advancing research, affordability, flexibility, and empowerment of developers, fostering innovation.

Researchers also discussed about Existential Risk and the Open Sourcing of AGI, The concept of existential risk in AI refers to the potential for AGI to cause human extinction or irreversible global catastrophe. Prior work suggests various causes, including automated warfare, bioterrorism, rogue AI agents, and cyber warfare. The speculative nature of AGI makes it impossible to prove or disprove its probability of causing human extinction. While existential risk has garnered significant attention, some experts have revised their views on its likelihood. They explore how open-sourcing AI could influence AGI’s existential risk in different development scenarios.

To recapitulate, The narrowing performance gap between closed-source and open-source Gen AI models fuels debates on optimal practices for open releases to mitigate risks. Discussions focus on categorizing systems based on disclosure willingness and differentiating them for regulatory clarity. Concerns about AI safety intensify, emphasizing the need for open models to mitigate centralization risks while acknowledging increased misuse potential. The authors propose a robust taxonomy and offer nuanced insights into near-, mid-, and long-term risks, extending prior research with comprehensive recommendations for developers.



Source link

Tags: EvaluatinggenerativeInnovationopenOpportunitiesresponsiblerisks
Previous Post

20 Data Labeling Statistics Showing Future Possibilities

Next Post

3 Courses You Should Consider If You Want to Become a Data Analyst

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
3 Courses You Should Consider If You Want to Become a Data Analyst

3 Courses You Should Consider If You Want to Become a Data Analyst

AI models can outperform humans in tests to identify mental states

AI models can outperform humans in tests to identify mental states

Redefining Digital Engagement in a Cookieless World: The Power of AI and Zero-Party Data

Redefining Digital Engagement in a Cookieless World: The Power of AI and Zero-Party Data

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In