Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Top 7 Strategies to Mitigate Hallucinations in LLMs

February 23, 2024
in Data Science & ML
Reading Time: 3 mins read
0 0
A A
0
Share on FacebookShare on Twitter








Strategies to Mitigate Hallucinations in Large Language Models

The introduction of Large Language Models (LLMs) has brought in a significant paradigm shift in artificial intelligence (AI) and machine learning (ML) fields.

With their remarkable advancements, LLMs can now generate content on diverse topics, address complex inquiries, and substantially enhance user satisfaction. However, alongside their progression, a new challenge has surfaced: Hallucinations. This phenomenon occurs when LLMs produce erroneous, nonsensical, or disjointed text. Such occurrences pose potential risks and challenges for organizations leveraging these models. Particularly concerning are situations involving the dissemination of misinformation or the creation of offensive material.

As of January 2024, hallucination rates for publicly available models range from approximately 3% to 16% [1]. In this article, we will delineate various strategies to mitigate this risk effectively.

Contextual Prompt Engineering/Tuning

Prompt engineering is the process of designing and refining the instructions fed to the large language model to retrieve the best possible outcome. A blend of expertise and creativity is required to craft the best prompts to elicit specific responses or behaviors from the LLMs. Designing prompts that include explicit instructions, contextual cues, or specific framing techniques helps guide the LLM generation process. By providing clear guidance and context, GPT prompts engineering reduces ambiguity and helps the model generate more reliable and coherent responses.

Elements of a Prompt

  • Context: Introducing background details or providing a brief introduction helps the LLM understand the subject and serves as a starting point for discussion.
  • Instructions: Crafting clear and concise questions ensures that the model’s response stays focused on the desired topic.
  • Input Examples: Providing specific examples to the model helps generate tailored responses.
  • Output Format: Specifying the desired format for the response guides the LLM in structuring its output accordingly.
  • Reasoning: Iteratively adjusting and refining prompts based on the model’s responses can significantly enhance output quality.

Positive Prompt Framing

It has been observed that using positive instructions instead of negative ones yields better results. Example of negative framing: Do not ask the user more than 1 question at a time. Example of positive framing: When you ask the user for information, ask a maximum of 1 question at a time.

Retrieval Augmented Generation (RAG)

Retrieval Augmented Generation (RAG) is the process of empowering the LLM model with domain-specific and up-to-date knowledge to increase accuracy and auditability of model response. This is a powerful technique that combines prompt engineering with context retrieval from external data sources to improve the performance and relevance of LLMs.

Model Parameter Adjustment

Different model parameters, such as temperature, frequency penalty, and top-p, significantly influence the output created by LLMs. Higher temperature settings encourage more randomness and creativity, while lower settings make the output more predictable. Raising the frequency penalty value prompts the model to use repeated words more sparingly. Similarly, increasing the presence penalty value increases the likelihood of generating words that haven’t been used yet in the output.

Model Development/Enrichment

Fine tuning a pre-trained LLM involves training it with smaller, task-specific datasets to improve accuracy. Fully custom LLMs can be developed from the ground up for specific domains. Human oversight and user education are also crucial in mitigating hallucinations in LLMs.

Conclusion

The prevalence of hallucinations in Large Language Models (LLMs) poses a significant challenge despite various empirical efforts to mitigate them. While these strategies offer valuable insights, the fundamental question of complete elimination remains unanswered. Continued research and responsible AI usage are key in addressing hallucinations effectively.

I hope this article has shed light on hallucinations in LLMs and provided strategies for addressing them. Let me know your thoughts in the comment section below.

Reference: https://huggingface.co/spaces/vectara/leaderboard






Source link

Tags: HallucinationsLLMsMitigatestrategiestop
Previous Post

Intel Foundry launch poses challenge for Israel operations

Next Post

Marketing Team Reorgs: Why So Many and How To Survive

Related Posts

AI Compared: Which Assistant Is the Best?
Data Science & ML

AI Compared: Which Assistant Is the Best?

June 10, 2024
5 Machine Learning Models Explained in 5 Minutes
Data Science & ML

5 Machine Learning Models Explained in 5 Minutes

June 7, 2024
Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’
Data Science & ML

Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’

June 7, 2024
How to Learn Data Analytics – Dataquest
Data Science & ML

How to Learn Data Analytics – Dataquest

June 6, 2024
Adobe Terms Of Service Update Privacy Concerns
Data Science & ML

Adobe Terms Of Service Update Privacy Concerns

June 6, 2024
Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart
Data Science & ML

Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart

June 6, 2024
Next Post
Marketing Team Reorgs: Why So Many and How To Survive

Marketing Team Reorgs: Why So Many and How To Survive

Nvidia CEO Jensen Huang Is Powering the AI Revolution

Nvidia CEO Jensen Huang Is Powering the AI Revolution

8 B2B Web Design Best Practices You Can’t Ignore

8 B2B Web Design Best Practices You Can't Ignore

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In