Sunday, June 8, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

This Paper from LMU Munich Explores the Integration of Quantum Machine Learning and Variational Quantum Circuits to Augment the Efficacy of Diffusion-based Image Generation Models

January 19, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Despite the astonishing developments and achievements in the technology field, classical diffusion models still face challenges in image generation, particularly because of their slow sampling speed and the need for extensive parameter tuning. These models, used in computer vision and graphics, have become significant in tasks like synthetic data creation and aiding multi-modal models. However, they struggle with high computational demands. Quantum machine learning (QML) offers a solution to these challenges by leveraging quantum mechanics for enhanced efficiency in machine learning tasks.

Research in quantum diffusion models for image generation is limited, with the Quantum Denoising Diffusion Probabilistic Models (QDDPM) model by Dohun Kim et al. being the sole notable method. This model uses a single-circuit design with timestep-wise and shared layers, achieving space efficiency by requiring only log2(pixels) qubits. It addresses the vanishing gradient issue through constrained circuit depth and employs special unitary (SU) gates for entanglement. However, its parameter efficiency is low, and while it generates recognizable images, it lacks detail compared to the original images.

Researchers at LMU Munich have introduced two quantum diffusion models, i.e., the Q-Dense and Quantum U-Net (QU-Net) architectures. These models are designed to augment the efficacy of diffusion-based image generation models. The Q-Dense model utilizes a dense quantum circuit (DQC) with extensive entanglement among qubits. Classical U-Nets inspire the QU-Net and incorporate quantum principles into its architecture.

DQC uses amplitude embedding for input and angle embedding for class guidance, resulting in #layers×3×#qubits trainable parameters. QU-Net employs mask encoding for labels and adapts to the quantum context. The unique “Unitary Single Sampling” approach enables the creation of synthetic images in a single step by combining the iterative diffusion process into one unitary matrix U. Experiments were conducted using MNIST, Fashion MNIST, and CIFAR10 datasets to assess the effectiveness of the quantum models.

https://arxiv.org/abs/2401.07049

In the MNIST Digits experiments, the Q-Dense model with 47 layers and 7 qubits significantly outperformed classical networks with 1000 parameters, especially with τ values ranging from 3 to 5. It achieved FID scores around 100, approximately 20 points better than classical models. For inpainting tasks, the DQC produced consistent samples with minor artifacts. However, the MSE scores of quantum models were only marginally lower than those of classical networks with twice as many parameters. Overall, quantum models demonstrated effective knowledge transfer and satisfactory inpainting results without specific training for these tasks.

The research successfully introduced quantum denoising diffusion models, offering a new approach to image generation that leverages quantum computing. The Q-Dense and QU-Net models and the unitary single sampling approach outperformed existing quantum and classical models in generating images. This method bridges the gap between quantum diffusion and classic consistency models, potentially accelerating image generation.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our 36k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our Telegram Channel

Nikhil is an intern consultant at Marktechpost. He is pursuing an integrated dual degree in Materials at the Indian Institute of Technology, Kharagpur. Nikhil is an AI/ML enthusiast who is always researching applications in fields like biomaterials and biomedical science. With a strong background in Material Science, he is exploring new advancements and creating opportunities to contribute.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google +



Source link

Tags: AugmentCircuitsDiffusionbasedEfficacyExploresGenerationImageintegrationLearningLMUMachinemodelsMunichPaperQuantumVariational
Previous Post

Top IT Trends in Australia for IT Pros to Prepare For in 2024

Next Post

Creating context menus for your app

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Creating context menus for your app

Creating context menus for your app

South Korea May Reconsider Stance on Bitcoin ETFs

South Korea May Reconsider Stance on Bitcoin ETFs

Generative AI: A way of destruction or disruption for the public workforce in 2024?

Generative AI: A way of destruction or disruption for the public workforce in 2024?

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
Accenture creates a regulatory document authoring solution using AWS generative AI services

Accenture creates a regulatory document authoring solution using AWS generative AI services

February 6, 2024
Managing PDFs in Node.js with pdf-lib

Managing PDFs in Node.js with pdf-lib

November 16, 2023
Graph neural networks in TensorFlow – Google Research Blog

Graph neural networks in TensorFlow – Google Research Blog

February 6, 2024
13 Best Books, Courses and Communities for Learning React — SitePoint

13 Best Books, Courses and Communities for Learning React — SitePoint

February 4, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In