Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

This Paper Explores the Legal and Ethical Maze of Language Model Training: Unveiling the Risks and Remedies in Dataset Transparency and Use

December 26, 2023
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


As language models become increasingly advanced, concerns have arisen around the ethical and legal implications of training them on vast and diverse datasets. If the training data is not properly understood, it could leak sensitive information between the training and test datasets. This could expose personally identifiable information (PII), introduce unintended biases or behaviors, and ultimately produce lower-quality models than expected. The lack of comprehensive information and documentation surrounding these models creates significant ethical and legal risks that must be addressed.

A team of researchers from various institutions, including MIT, Harvard Law School, UC Irvine, MIT Center for Constructive Communication, Inria, Univ. Lille Center, Contextual AI, ML Commons, Olin College, Carnegie Mellon University, Tidelift, and Cohere For AI have demonstrated their commitment to promoting transparency and responsible utilization of datasets by releasing a comprehensive audit. The audit includes Data Provenance Explorer, an interactive user interface that enables practitioners to trace and filter data provenance for widely used open-source fine-tuning data collections.

Copyright laws provide authors exclusive ownership of their work, while open-source licenses encourage collaboration in software development. However, supervised AI training data presents unique challenges for open-source licenses in managing data effectively. The interaction between copyright and permits within collected datasets is yet to be determined, with legal challenges and uncertainties surrounding the application of relevant laws to generative AI and supervised datasets. Previous work has stressed the importance of data documentation and attribution, with Datasheets and other studies highlighting the need for comprehensive documentation and curation rationale for datasets.

The study conducted by researchers involved manual retrieval of pages and automatic extraction of licenses from HuggingFace configurations and GitHub pages. They also utilized the Semantic Scholar public API to retrieve academic publication release dates and citation counts. To ensure fair treatment across languages, the researchers used a series of data properties in characters, such as text metrics, dialog turns, and sequence length. In addition, they conducted a landscape analysis to trace the lineage of over 1800 text datasets, examining their source, creators, license conditions, properties, and subsequent use. To facilitate the audit and tracing processes, they developed tools and standards to improve dataset transparency and responsible use.

The landscape analysis has revealed stark differences in the composition and focus of commercially available open and closed datasets. The datasets that are difficult to access dominate essential categories such as lower resource languages, more creative tasks, wider topic variety, and newer and more synthetic training data. The study has also highlighted the problem of misattribution and the incorrect use of frequently used datasets. On popular dataset hosting sites, licenses are frequently miscategorized, and license omission rates exceed 70%, with error rates of over 50%. The study emphasizes the need for comprehensive data documentation and attribution. It also highlights the challenges of synthesizing documentation for models trained on multiple data sources.

The study concludes that there are significant differences in the composition and focus of commercially open and closed datasets. Impenetrable datasets monopolize important categories, indicating a deepening divide in the data types available under different license conditions. The study found frequent miscategorization of licenses on dataset hosting sites and high rates of license omission. This points to trouble in misattribution and informed use of popular datasets, raising concerns about data transparency and responsible use. The researchers released their entire audit, including the Data Provenance Explorer, to contribute to ongoing improvements in dataset transparency and reliable use. The landscape analysis and tools developed in the study aim to improve dataset transparency and understanding, addressing the legal and ethical risks associated with training language models on inconsistently documented datasets.

Check out the Paper and Project. All credit for this research goes to the researchers of this project. Also, don’t forget to join our 35k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more.

If you like our work, you will love our newsletter..

Sana Hassan, a consulting intern at



Source link

Tags: DatasetEthicalExploreslanguageLegalMazemodelPaperRemediesriskstrainingtransparencyUnveiling
Previous Post

Turning Eco-Choices into Playful Wins

Next Post

What is Solana ? Why is Solana’s price increasing in December 2023 ?

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
What is Solana ? Why is Solana’s price increasing in December 2023 ?

What is Solana ? Why is Solana’s price increasing in December 2023 ?

Invideo AI: Features, Pricing And More

Invideo AI: Features, Pricing And More

AMD: The AI Foothold Is A Major Win

AMD: The AI Foothold Is A Major Win

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In