Friday, May 9, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

This Machine Learning Paper from Stanford and the University of Toronto Proposes Observational Scaling Laws: Highlighting the Surprising Predictability of Complex Scaling Phenomena

May 24, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Language models (LMs) are a cornerstone of artificial intelligence research, focusing on the ability to understand and generate human language. Researchers aim to enhance these models to perform various complex tasks, including natural language processing, translation, and creative writing. This field examines how LMs learn, adapt, and scale their capabilities with increasing computational resources. Understanding these scaling behaviors is essential for predicting future capabilities and optimizing the resources required for training and deploying these models.

The primary challenge in language model research is understanding how model performance scales with the amount of computational power and data used during training. This scaling is crucial for predicting future capabilities and optimizing resource use. Traditional methods require extensive training across multiple scales, which is computationally expensive and time-consuming. This creates a significant barrier for many researchers and engineers who need to understand these relationships to improve model development and application.

Existing research includes various frameworks and models for understanding language model performance. Notable among these are compute scaling laws, which analyze the relationship between computational resources and model capabilities. Tools like the Open LLM Leaderboard, LM Eval Harness, and benchmarks like MMLU, ARC-C, and HellaSwag are commonly used. Moreover, models such as LLaMA, GPT-Neo, and BLOOM provide diverse examples of how scaling laws can be practiced. These frameworks and benchmarks help researchers evaluate and optimize language model performance across different computational scales and tasks.

Researchers from Stanford University, University of Toronto, and Vector Institute introduced observational scaling laws to improve language model performance predictions. This method uses publicly available models to create scaling laws, reducing the need for extensive training. By leveraging existing data from approximately 80 models, the researchers could build a generalized scaling law that accounts for variations in training compute efficiencies. This innovative approach offers a cost-effective and efficient way to predict model performance across different scales and capabilities, setting it apart from traditional scaling methods.

The methodology analyzes performance data from about 80 publicly available language models, including the Open LLM Leaderboard and standardized benchmarks such as MMLU, ARC-C, and HellaSwag. The researchers hypothesized that model performance could be mapped to a low-dimensional capability space. They developed a generalized scaling law by examining variations in training compute efficiencies among different model families. This process involved using principal component analysis (PCA) to identify key capability measures and fitting these measures into a log-linear relationship with compute resources, enabling accurate and high-resolution performance predictions.

The research demonstrated significant success with observational scaling laws. For instance, using simpler models, the method accurately predicted the performance of advanced models like GPT-4. Quantitatively, the scaling laws showed a high correlation (R² > 0.9) with actual performance across various benchmarks. Emergent phenomena, such as language understanding and reasoning abilities, followed a predictable sigmoidal pattern. The results also indicated that the impact of post-training interventions, like Chain-of-Thought and Self-Consistency, could be reliably predicted, showing performance improvements of up to 20% in specific tasks.

To conclude, the research introduces observational scaling laws, leveraging publicly available data from around 80 models to predict language model performance efficiently. By identifying a low-dimensional capability space and using generalized scaling laws, the study reduces the need for extensive model training. The results showed high predictive accuracy for advanced model performance and post-training interventions. This approach saves computational resources and enhances the ability to forecast model capabilities, offering a valuable tool for researchers and engineers in optimizing language model development.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 42k+ ML SubReddit

Nikhil is an intern consultant at Marktechpost. He is pursuing an integrated dual degree in Materials at the Indian Institute of Technology, Kharagpur. Nikhil is an AI/ML enthusiast who is always researching applications in fields like biomaterials and biomedical science. With a strong background in Material Science, he is exploring new advancements and creating opportunities to contribute.

✅ [Featured Tool] Check out Taipy Enterprise Edition



Source link

Tags: complexHighlightinglawsLearningMachineObservationalPaperPhenomenaPredictabilityProposesscalingStanfordsurprisingTorontoUniversity
Previous Post

Transformative Applications of Deep Learning in Regulatory Genomics and Biological Imaging

Next Post

Over a third of British Gen Z adults are hooked on nicotine, with vaping surge sharply reversing historic decline

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Over a third of British Gen Z adults are hooked on nicotine, with vaping surge sharply reversing historic decline

Over a third of British Gen Z adults are hooked on nicotine, with vaping surge sharply reversing historic decline

The Future of Community Building on Social Media

The Future of Community Building on Social Media

העתיד של בניית קהילה ברשתות חברתיות

העתיד של בניית קהילה ברשתות חברתיות

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In