Friday, June 27, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

This AI Research Introduces Flash-Decoding: A New Artificial Intelligence Approach Based on FlashAttention to Make Long-Context LLM Inference Up to 8x Faster

October 18, 2023
in Data Science & ML
Reading Time: 3 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Large language models (LLMs) such as ChatGPT and Llama have garnered substantial attention due to their exceptional natural language processing capabilities, enabling various applications ranging from text generation to code completion. Despite their immense utility, the high operational costs of these models have posed a significant challenge, prompting researchers to seek innovative solutions to enhance their efficiency and scalability.

With the generation of a single response incurring an average cost of $0.01, the expenses associated with scaling these models to serve billions of users, each with multiple daily interactions, can quickly become substantial. These costs can escalate exponentially, particularly in complex tasks like code auto-completion, where the model is continuously engaged during the coding process. Recognizing the urgent need to optimize the decoding process, researchers have explored techniques to streamline and accelerate attention operation, a crucial component in generating coherent and contextually relevant text.

LLM inference, often called decoding, involves the generation of tokens one step at a time, with the attention operation being a significant factor in determining the overall generation time. While advancements like FlashAttention v2 and FasterTransformer have enhanced the training process by optimizing memory bandwidth and computational resources, the challenges during the inference phase persist. One of the major constraints encountered during decoding pertains to the scalability of the attention operation with longer contexts. As LLMs are increasingly tasked with handling more extensive documents, conversations, and codebases, the attention operation can consume a substantial amount of inference time, thus impeding the overall efficiency of the model.

Researchers introduced a groundbreaking technique called Flash-Decoding to address these challenges, building upon the foundation established by prior methodologies. The key innovation of Flash-Decoding lies in its novel approach to parallelization, which centers around the sequence length of keys and values. By strategically partitioning keys and values into smaller fragments, the approach allows for highly efficient utilization of the GPU, even with smaller batch sizes and extended contexts. Flash-Decoding significantly reduces the GPU memory requirements by leveraging parallelized attention computations and the log-sum-exp function, facilitating streamlined and efficient computation across the entire model architecture.

To evaluate the effectiveness of Flash-Decoding, comprehensive benchmark tests were conducted on the state-of-the-art CodeLLaMa-34b model, renowned for its robust architecture and advanced capabilities. The results showcased an impressive 8x enhancement in decoding speeds for longer sequences compared to existing approaches. Additionally, micro-benchmarks performed on the scaled multi-head attention for various sequence lengths and batch sizes further validated the efficacy of Flash-Decoding, demonstrating its consistent performance even as the sequence length was scaled up to 64k. This exceptional performance has played a pivotal role in significantly enhancing the efficiency and scalability of LLMs, marking a substantial advancement in large language model inference technologies.

\"\"/

In summary, Flash-Decoding has emerged as a transformative solution for addressing the challenges associated with attention operation during the decoding process for large language models. By optimizing GPU utilization and enhancing overall model performance, Flash-Decoding has the potential to substantially reduce operational costs and promote greater accessibility of these models across diverse applications. This pioneering technique represents a significant milestone in large language model inference, paving the way for heightened efficiency and accelerated advancements in natural language processing technologies.

Check out the Reference Page and Project Page. All Credit For This Research Goes To the Researchers on This Project. Also, don’t forget to join our 31k+ ML SubReddit, 40k+ Facebook Community, Discord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more.

If you like our work, you will love our newsletter..

We are also on WhatsApp. Join our AI Channel on Whatsapp..

\"\"

Source link

Tags: ApproachartificialBasedfasterFlashAttentionFlashDecodinginferenceintelligenceIntroducesLLMLongContextResearch
Previous Post

New ProSense T30R Series Timer Relays from AutomationDirect

Next Post

എന്താണ് ശെരിക്കും Artificial Intelligence – Ep 1 | Malayalam Ai Video സീരീസ് | Umer Abdussalam

Related Posts

AI Compared: Which Assistant Is the Best?
Data Science & ML

AI Compared: Which Assistant Is the Best?

June 10, 2024
5 Machine Learning Models Explained in 5 Minutes
Data Science & ML

5 Machine Learning Models Explained in 5 Minutes

June 7, 2024
Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’
Data Science & ML

Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’

June 7, 2024
How to Learn Data Analytics – Dataquest
Data Science & ML

How to Learn Data Analytics – Dataquest

June 6, 2024
Adobe Terms Of Service Update Privacy Concerns
Data Science & ML

Adobe Terms Of Service Update Privacy Concerns

June 6, 2024
Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart
Data Science & ML

Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart

June 6, 2024
Next Post
എന്താണ് ശെരിക്കും Artificial Intelligence – Ep 1 | Malayalam Ai Video സീരീസ് | Umer Abdussalam

എന്താണ് ശെരിക്കും Artificial Intelligence - Ep 1 | Malayalam Ai Video സീരീസ് | Umer Abdussalam

How To Market Your Business On Social Media

How To Market Your Business On Social Media

How to Use SAP Cloud Application Programming Model (CAP) + DEMO | SAP TechEd in 2021

How to Use SAP Cloud Application Programming Model (CAP) + DEMO | SAP TechEd in 2021

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
How ‘Chain of Thought’ Makes Transformers Smarter

How ‘Chain of Thought’ Makes Transformers Smarter

May 13, 2024
Managing PDFs in Node.js with pdf-lib

Managing PDFs in Node.js with pdf-lib

November 16, 2023
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
The Importance of Choosing a Reliable Affiliate Network and Why Olavivo is Your Ideal Partner

The Importance of Choosing a Reliable Affiliate Network and Why Olavivo is Your Ideal Partner

October 30, 2023
How To Build A Quiz App With JavaScript for Beginners

How To Build A Quiz App With JavaScript for Beginners

February 22, 2024
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In