Thursday, May 8, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

This AI Paper Introduces Rational Transfer Function: Advancing Sequence Modeling with FFT Techniques

May 19, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


State-space models (SSMs) are crucial in deep learning for sequence modeling. They represent systems where the output depends on both current and past inputs. SSMs are widely applied in signal processing, control systems, and natural language processing. The main challenge is the inefficiency of existing SSMs, particularly regarding memory and computational costs. Traditional SSMs need more complexity and resource usage as the state grows, limiting their scalability and performance in large-scale applications.

Existing research includes frameworks like S4 and S4D, which utilize diagonal state-space representations to manage complexity. Fast Fourier Transform (FFT)–based methods are used for efficient sequence parallelism. Transformers revolutionized sequence modeling with self-attention mechanisms, while Hyena incorporates convolutional filters for long-range dependencies. Liquid-S4 and Mamba optimize sequence modeling through selective state spaces and memory management. The Long Range Arena benchmark is standard for evaluating models’ performance on long sequences. These advancements enhance the efficiency and capability of sequence modeling.

In a collaborative effort, researchers from Liquid AI, the University of Tokyo, RIKEN, Stanford University, and MIT have introduced the Rational Transfer Function (RTF) approach, which leverages transfer functions for efficient sequence modeling. This method stands out due to its state-free design, eliminating the need for memory-intensive state-space representations. By utilizing the FFT, the RTF approach achieves parallel inference, significantly improving computational speed and scalability.

The methodology employs FFT to compute the convolutional kernel’s spectrum, allowing for efficient parallel inference. The model was tested using the Long Range Arena (LRA) benchmark, which includes ListOps for mathematical expressions, IMDB for sentiment analysis, and Pathfinder for visuospatial tasks. Synthetic tasks like Copying and Delay were used to assess memorization capabilities. The RTF model was integrated into the Hyena framework, improving performance in language modeling tasks. The datasets included 96,000 training sequences for ListOps, 160,000 for IMDB, and 160,000 for Pathfinder, ensuring comprehensive evaluation across different sequence lengths and complexities.

The RTF model demonstrated significant improvements in multiple benchmarks. On the Long Range Arena, it achieved a 35% faster training speed than S4 and S4D. For the IMDB sentiment analysis, RTF improved classification accuracy by 3%. In the ListOps task, it recorded a 2% increase in accuracy. The Pathfinder task saw a 4% accuracy improvement. Furthermore, in synthetic tasks like Copying and Delay, RTF showed better memorization capabilities, reducing error rates by 15% and 20%, respectively. These results highlight the model’s efficiency and effectiveness across diverse datasets.

To conclude, the research introduced the RTF approach for SSMs, addressing inefficiencies in traditional methods. By leveraging FFT for parallel inference, RTF significantly improved training speed and accuracy across various benchmarks, including Long Range Arena and synthetic tasks. The results demonstrate RTF’s capability to handle long-range dependencies efficiently. This advancement is crucial for scalable and effective sequence modeling, offering a robust solution for diverse deep learning and signal processing applications.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter.

Don’t Forget to join our 42k+ ML SubReddit

Nikhil is an intern consultant at Marktechpost. He is pursuing an integrated dual degree in Materials at the Indian Institute of Technology, Kharagpur. Nikhil is an AI/ML enthusiast who is always researching applications in fields like biomaterials and biomedical science. With a strong background in Material Science, he is exploring new advancements and creating opportunities to contribute.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



Source link

Tags: AdvancingFFTFunctionIntroducesModelingPaperRationalSequenceTechniquesTransfer
Previous Post

Crypto Analyst Says ETFSwap (ETFS) Will Lead The 2024 Bull Run Ahead Of Dogecoin (DOGE) And Shiba Inu (SHIB) – Blockchain News, Opinion, TV and Jobs

Next Post

Air India Express flight from Bengaluru to Kochi makes emergency landing

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Air India Express flight from Bengaluru to Kochi makes emergency landing

Air India Express flight from Bengaluru to Kochi makes emergency landing

How To Create A Professional Portfolio Page Using HTML

How To Create A Professional Portfolio Page Using HTML

Rivian: Turning The Corner (NASDAQ:RIVN)

Rivian: Turning The Corner (NASDAQ:RIVN)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In