Sunday, June 8, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

This AI Paper from UT Austin and JPMorgan Chase Unveils a Novel Algorithm for Machine Unlearning in Image-to-Image Generative Models

February 6, 2024
in AI Technology
Reading Time: 3 mins read
0 0
A A
0
Share on FacebookShare on Twitter



In an era where digital privacy has become paramount, the ability of artificial intelligence (AI) systems to forget specific data upon request is not just a technical challenge but a societal imperative. The researchers have embarked on an innovative journey to tackle this issue, particularly within image-to-image (I2I) generative models. These models, known for their prowess in crafting detailed images from given inputs, have presented unique challenges for data deletion, primarily due to their deep learning nature, which inherently remembers training data.

The crux of the research lies in developing a machine unlearning framework specifically designed for I2I generative models. Unlike previous attempts focusing on classification tasks, this framework aims to remove unwanted data efficiently – termed forget samples – while preserving the desired data’s quality and integrity or retaining samples. This endeavor is not trivial; generative models, by design, excel in memorizing and reproducing input data, making selective forgetting a complex task.

The researchers from The University of Texas at Austin and JPMorgan proposed an algorithm grounded in a unique optimization problem to address this. Through theoretical analysis, they established a solution that effectively removes forgotten samples with minimal impact on the retained samples. This balance is crucial for adhering to privacy regulations without sacrificing the model’s overall performance. The algorithm’s efficacy was demonstrated through rigorous empirical studies on two substantial datasets, ImageNet1K and Places-365, showcasing its ability to comply with data retention policies without needing direct access to the retained samples.

This pioneering work marks a significant advancement in machine unlearning for generative models. It offers a viable solution to a problem that is as much about ethics and legality as technology. The framework’s ability to efficiently erase specific data sets from memory without a complete model retraining represents a leap forward in developing privacy-compliant AI systems. By ensuring that the integrity of the retained data remains intact while eliminating the information of the forgotten samples, the research provides a robust foundation for the responsible use and management of AI technologies.

In essence, the research undertaken by the team from The University of Texas at Austin and JPMorgan Chase stands as a testament to the evolving landscape of AI, where technological innovation meets the growing demands for privacy and data protection. The study’s contributions can be summarized as follows:

– It pioneers a framework for machine unlearning within I2I generative models, addressing a gap in the current research landscape.
– Through a novel algorithm, it achieves the dual objectives of retaining data integrity and completely removing forgotten samples, balancing performance with privacy compliance.
– The research’s empirical validation on large-scale datasets confirms the framework’s effectiveness, setting a new standard for privacy-aware AI development.

As AI grows, the need for models that respect user privacy and comply with legal standards has never been more critical. This research not only addresses this need but also opens up new avenues for future exploration in the realm of machine unlearning, marking a significant step towards developing powerful and privacy-conscious AI technologies.

Check out the Paper and Github. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and Google News. Join our 36k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter.

Don’t Forget to join our Telegram Channel.

Hello, My name is Adnan Hassan. I am a consulting intern at Marktechpost and soon to be a management trainee at American Express. I am currently pursuing a dual degree at the Indian Institute of Technology, Kharagpur. I am passionate about technology and want to create new products that make a difference.

🎯 [FREE AI WEBINAR] ‘Inventory Management Using Object/Image Detection’ (Feb 7, 2024)



Source link

Tags: AlgorithmAustinChasegenerativeImagetoImageJPMorganMachinemodelsPaperUnlearningunveils
Previous Post

Alibaba’s 80% Loss May Extend on Competition Worries

Next Post

Kia Seltos SUV completes 1 lakh bookings with high preference for automatic transmission, sunroof

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Kia Seltos SUV completes 1 lakh bookings with high preference for automatic transmission, sunroof

Kia Seltos SUV completes 1 lakh bookings with high preference for automatic transmission, sunroof

Top Metaverse Professional Tools You Need to Know

Top Metaverse Professional Tools You Need to Know

The Role of Logistics Software Development in Supply Chain Evolution

The Role of Logistics Software Development in Supply Chain Evolution

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
Accenture creates a regulatory document authoring solution using AWS generative AI services

Accenture creates a regulatory document authoring solution using AWS generative AI services

February 6, 2024
Managing PDFs in Node.js with pdf-lib

Managing PDFs in Node.js with pdf-lib

November 16, 2023
Graph neural networks in TensorFlow – Google Research Blog

Graph neural networks in TensorFlow – Google Research Blog

February 6, 2024
13 Best Books, Courses and Communities for Learning React — SitePoint

13 Best Books, Courses and Communities for Learning React — SitePoint

February 4, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In