Friday, May 16, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

This AI Paper from MIT and Harvard Demonstrates an AI Approach to Automated in Silico Hypothesis Generation and Testing Made Possible Through the Use of SCMs

May 2, 2024
in AI Technology
Reading Time: 3 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Recent advancements in econometric modeling and hypothesis testing have witnessed a paradigm shift towards integrating machine learning techniques. While strides have been made in estimating econometric models of human behavior, more research still needs to be conducted on effectively generating and rigorously testing these models.

Researchers from MIT and Harvard introduce a novel approach to address this gap: merging automated hypothesis generation with in silico hypothesis testing. This innovative method harnesses the capabilities of large language models (LLMs) to simulate human behaviour with remarkable fidelity, offering a promising avenue for hypothesis testing that may unearth insights inaccessible through traditional methods.

This approach’s core lies in adopting structural causal models as a guiding framework for hypothesis generation and experimental design. These models delineate causal relationships between variables and have long served as a foundation for expressing hypotheses in social science research. What sets this study apart is using structural causal models not only for hypothesis formulation but also as a blueprint for designing experiments and generating data. By mapping theoretical constructs onto experimental parameters, this framework facilitates the systematic generation of agents or scenarios that vary along relevant dimensions, enabling rigorous hypothesis testing in simulated environments.

A pivotal milestone in operationalizing this structural causal model-based approach is the development of an open-source computational system. This system seamlessly integrates automated hypothesis generation, experimental design, simulation using LLM-powered agents, and subsequent analysis of results. Through a series of experiments spanning various social scenarios—from bargaining situations to legal proceedings and auctions—the system demonstrates its capacity to autonomously generate and test multiple falsifiable hypotheses, yielding actionable findings.

While the findings derived from these experiments may not be groundbreaking, they underscore the empirical validity of the approach. Importantly, they are not merely products of theoretical conjecture but are grounded in systematic experimentation and simulation. However, the study raises critical questions regarding the necessity of simulations in hypothesis testing. Can LLMs effectively engage in “thought experiments” to derive similar insights without resorting to simulation? The study conducts predictive tasks to address this question, revealing notable disparities between LLM-generated predictions and empirical results and theoretical expectations.

Furthermore, the study explores the potential of leveraging fitted structural causal models to improve prediction accuracy in LLM-based simulations. By providing contextual information about scenarios and experimental path estimates, the LLM performs better in predicting outcomes. Yet, significant gaps persist between predicted outcomes and empirical and theoretical benchmarks, underscoring the complexity of accurately capturing human behavior in simulated environments.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 40k+ ML SubReddit

Arshad is an intern at MarktechPost. He is currently pursuing his Int. MSc Physics from the Indian Institute of Technology Kharagpur. Understanding things to the fundamental level leads to new discoveries which lead to advancement in technology. He is passionate about understanding the nature fundamentally with the help of tools like mathematical models, ML models and AI.

🐝 [FREE AI WEBINAR Alert] AI/ML-Driven Forecasting for Power Demand, Supply & Pricing: May 3, 2024 10:00am – 11:00am PDT



Source link

Tags: ApproachautomatedDemonstratesGenerationHarvardHypothesisMITPaperSCMsSilicoTesting
Previous Post

Permira buys control of BioCatch at $1.3b valuation

Next Post

How To Write Faster With or Without an AI Assist

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
How To Write Faster With or Without an AI Assist

How To Write Faster With or Without an AI Assist

The Unsexy Future of Generative AI Is Enterprise Apps

The Unsexy Future of Generative AI Is Enterprise Apps

Model Texture Transition and Procedural Radial Noise using WebGL

Model Texture Transition and Procedural Radial Noise using WebGL

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
How To Build A Quiz App With JavaScript for Beginners

How To Build A Quiz App With JavaScript for Beginners

February 22, 2024
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In