Friday, May 16, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

This AI Paper from China Unveils ‘Activation Beacon’: A Groundbreaking AI Technique to Expand Context Understanding in Large Language Models

January 15, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Large language models (LLMs) face a hurdle in handling long contexts due to their constrained window length. Although the context window length can be extended through fine-tuning, this incurs significant training and inference time costs, adversely affecting the LLM’s core capabilities.

Current LLMs, such as Llama-1 and Llama-2, have fixed context lengths, hindering real-world applications. Though fine-tuning can extend context length, it will result in considerable costs due to the quadratic computing complexity of self-attention, impacting both training and inference. Continuous training on long sequences may compromise LLMs’ general capabilities in shorter contexts. There’s a need for cost-effective mechanisms enabling context extension without compromising existing capabilities in pre-trained LLMs.

Researchers from the Beijing Academy of Artificial Intelligence, Gaoling School of Artificial Intelligence, and Renmin University of China have proposed Activation Beacon. It leverages the idea that LLM’s raw activations contain redundant information, condensing them with minimal loss. This condensed form enables the LLM to grasp a broad context within a short window. Like sparse attention and context compression, Activation Beacon effectively extends context quality, supports diverse lengths, and ensures compatibility with existing LLMs. Its technical designs enhance training and inference efficiency, making it a promising solution.

Using special tokens called beacons, Activation Beacon achieves a condensing ratio (α) of L/k (k ≪ L), optimizing information intake. The beacons employ three attention schemes, with stepwise expansion proving the most effective. Beaconed Auto-Regression combines condensed and raw activations in sliding windows, predicting the next token efficiently. Beacon, a plug-and-play LLM module, is trained by auto-regression, ensuring minimal impact on short-context processing while introducing long contextual information. Stepwise sampled condensing ratios enhance training efficiency and generalize beacons for diverse context lengths.

Activation Beacon excels in long-context language modeling, surpassing Llama-2-7B and outperforming fine-tuning-free methods. It gradually improves language modeling as context length extends from 4K to 32K, effectively utilizing expanded information. Compared to fine-tuned full-attention methods, Activation Beacon achieves comparable or superior performance with significantly higher efficiency. The method maintains quality generation even at 100K and extends to 400K, marking a remarkable 100x increase over Llama-2-7B. In LongBench tasks, Activation Beacon matches or surpasses fine-tuned baselines, showcasing its effectiveness in diverse real-world applications without compromising LLM’s original capabilities.

Table 1: Evaluation of different methods on LongBench. Activation Beacon performs similarly to the fine-tuned full-attention baselines.
Table 2: Evaluation of inference time and GPU memory usage. Both metrics are measured by the average value of 100 forward passes (FlashAttention-2 is enabled for LongChat). | (OOM = out-of-memory)

As a plug-and-play module, it introduces long contextual information while preserving LLM’s short-context capabilities. Employing sliding windows for streaming processing enhances efficiency in both inference and training. Diverse condensing ratios, sampled during training, enable effective support for a broad range of context lengths. Experimental results confirm Activation Beacon is an effective, efficient, and low-cost method for extending LLM context length.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our 36k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our Telegram Channel

Source link

Tags: ActivationBeaconChinaContextexpandGroundbreakinglanguageLargemodelsPapertechnique..Understandingunveils
Previous Post

Apple’s Data Operations Annotations Team Relocation

Next Post

North Korea scraps agencies managing relations with South

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
North Korea scraps agencies managing relations with South

North Korea scraps agencies managing relations with South

Workshop Review: Data Visualisation Fundamentals with Andy Kirk

Workshop Review: Data Visualisation Fundamentals with Andy Kirk

Personalization of CTC-based End-to-End Speech Recognition Using Pronunciation-Driven Subword Tokenization

Personalization of CTC-based End-to-End Speech Recognition Using Pronunciation-Driven Subword Tokenization

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
How To Build A Quiz App With JavaScript for Beginners

How To Build A Quiz App With JavaScript for Beginners

February 22, 2024
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In