Thursday, May 8, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

This AI Paper from China Proposes a Lightweight Machine Learning Method that Enhances Scalable Structural Inference and Dynamic Prediction Accuracy

March 26, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Machine Learning (ML) has become an indispensable tool in recent years for solving a wide range of scientific and practical issues. Model-free machine learning methods have drawn interest for their ability to analyze and forecast complicated dynamics seen in time series data, but these approaches face difficulties when applied to high-dimensional systems with heterogeneous connections and extremely complicated behaviors.

Developing sophisticated ML techniques that can identify internal interactions in complex systems and reliably forecast their future evolution is crucial to overcoming these obstacles. Modern ML techniques like Recurrent Neural Networks (RNNs), Neural Ordinary Differential Equations (NODEs), and deep residual learning offer advantages for handling nonlinear and complex time series data when compared to classical approaches like Auto-Regressive models (ARMA) and Multi-Layer Perceptrons (MLP).

While many of these methods need parameter estimates, RNNs and their variations, such as Gated Recurrent Units (GRU) and Long Short-Term Memory (LSTM) networks, show good predictive performance. As an alternative, a lightweight RNN called Reservoir Computing (RC) has been developed to anticipate the temporal-spatial behaviors of chaotic dynamics.

Even though RC has demonstrated potential in several situations, it can yet be improved. Recent efforts have focused on enhancing RC’s modeling capability and computational effectiveness. These methods have drawbacks when used in more nonlinear and higher dimensional systems. Parallel RC (PRC), a parallel forecasting technique that takes advantage of the local structure of systems, has been presented as a solution to this problem. However, the PRC’s typical causal inference techniques are unable to directly reveal higher-order structures, which are essential for comprehending intricate dynamical systems.

To address these issues, a revolutionary computer paradigm known as higher-order RC has been developed. The goal of this paradigm is to include structural data, especially higher-order structures, in the reservoir. Higher-order RC incorporates Granger Causality (GC) since higher-order structures of complicated dynamical systems are frequently unknown in advance.

The Higher-Order Granger RC (HoGRC) framework is an iterative method that makes dynamic predictions and identifies higher-order interactions simultaneously. The framework is scalable and can be applied to complicated and higher-dimensional dynamical systems, enabling precise dynamic prediction at the node level and complex structure inference.

HoGRC is a framework without models that is data-driven and intended to accomplish two main goals. First, by combining RC and the idea of Granger causality, it seeks to infer higher-order structures. This indicates that it looks to comprehend higher-order interactions within the data in addition to direct causal linkages. Second, HoGRC uses both the inferred higher-order information and the original time series data to make multi-step predictions.

The team has analysed HoGRC in a variety of representative systems, such as network dynamical systems, classical chaotic systems, and the UK power grid system, in order to demonstrate its effectiveness and resilience along with its versatility and usefulness. The results have shown that structural information can be used to improve predictive power and model robustness, with notable progress in both structure inference and dynamics prediction tasks.

In conclusion, this approach infers higher-order structures at the node level, enabling precise system reconstructions and long-term dynamics forecasts. It consists of two primary tasks: multi-step dynamics prediction and high-order structure inference.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 39k+ ML SubReddit

Tanya Malhotra is a final year undergrad from the University of Petroleum & Energy Studies, Dehradun, pursuing BTech in Computer Science Engineering with a specialization in Artificial Intelligence and Machine Learning. She is a Data Science enthusiast with good analytical and critical thinking, along with an ardent interest in acquiring new skills, leading groups, and managing work in an organized manner.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



Source link

Tags: AccuracyChinadynamicenhancesinferenceLearningLightweightMachineMethodPaperpredictionProposesScalableStructural
Previous Post

Product Pointers March 2024 | Library.Automationdirect.com

Next Post

9 product management bootcamps for learners of all technical backgrounds

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
9 product management bootcamps for learners of all technical backgrounds

9 product management bootcamps for learners of all technical backgrounds

Bitcoin Whale Accumulation Hints at Continuing Pre-Halving Rally

Bitcoin Whale Accumulation Hints at Continuing Pre-Halving Rally

Chinese TikTok sellers complain of under-fire platform tightening US rule enforcement By Reuters

Chinese TikTok sellers complain of under-fire platform tightening US rule enforcement By Reuters

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In