Friday, May 16, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

This AI Paper Explains the Effect of Data Augmentation on Deep-Learning-based Segmentation of Long-Axis Cine-MRI

February 24, 2024
in Data Science & ML
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Cardiac Magnetic Resonance Imaging (CMRI) segmentation plays a crucial role in diagnosing cardiovascular diseases, particularly ischemic heart conditions, which are a leading cause of global mortality. While CMRI offers precise imaging of anatomical regions with minimal risk, segmentation methods primarily focus on short-axis (SAX) views, leaving long-axis (LAX) views comparatively understudied. However, LAX views are essential for visualizing atrial structures and diagnosing diseases affecting the heart’s apical region, necessitating further exploration and development of segmentation techniques tailored to these views.

State-of-the-art approaches for CMRI segmentation have predominantly concentrated on SAX segmentation using deep learning methods like UNet. Nonetheless, recent advancements, such as the Ω-net method, have started to address the lack of attention on LAX views, utilizing predelineation UNets and Spatial Transformer Networks for orientation normalization and subsequent segmentation. Integrating statistical deformation models and data augmentation techniques like GANs offers promising avenues for improving segmentation accuracy in CMRI, particularly in leveraging the unique advantages of LAX views for comprehensive cardiac imaging and diagnosis. Further research in this domain is essential for enhancing the efficacy of CMRI segmentation in clinical practice.

A new paper by a French research team proposes a robust hierarchy-based augmentation strategy coupled with the Efficient-Net (ENet) architecture for automated segmentation of two-chamber and four-chamber Cine-MRI images. This approach addresses the limitations of previous studies, which have predominantly focused on short-axis orientation, neglecting the intricate structures present in long-axis representations. By leveraging ENet’s efficiency and effectiveness in producing segmentation results with lower computational costs, the research team endeavors to improve segmentation accuracy in long-axis views, particularly in whole-heart segmentation, while also exploring the impact of hierarchical data augmentation on segmentation quality.

The ENet architecture, chosen for its practicality and efficiency, has shown promising results in various medical imaging applications. In this study, the researchers describe the ENet architecture’s adaptation for cardiac Cine-MRI segmentation, specifically focusing on long-axis two- and four-chamber views. Unlike previous works concentrating solely on short-axis segmentation, this research investigates whole-heart segmentation in long-axis views. It evaluates the efficacy of hierarchical data augmentation in improving segmentation accuracy.

The research focuses on producing anatomically accurate segmentation maps through a hierarchy-based augmentation strategy. Two datasets containing Cine-MRI LAX 2-chamber and 4-chamber images were used for training, with specific annotation rules established for each orientation. The ENet architecture, known for its efficiency and effectiveness in segmentation tasks, was adapted for this purpose. The training was conducted on NVIDIA RTX 4500 GPU using the Adam optimizer and a combination loss of multiclass cross-entropy and multiclass Dice. Following a hierarchical procedure involving rotations, intensity alterations, and flipping, data augmentation was employed to improve segmentation accuracy. Evaluation metrics included the Dice coefficient, Hausdorff distance, and clinical metrics such as left ventricular volume and ejection fraction extrapolated from the segmentations. The research highlights the potential of ENet architecture in cardiac MRI segmentation and the importance of hierarchical data augmentation in enhancing segmentation quality.

The results demonstrate notable improvements in segmentation quality, with average Dice and Hausdorff distance enhancements observed. There are also acceptable biases in clinical metric estimation, such as Left Ventricular Ejection Fraction (LVEF). This approach contributes to advancing automated cardiac MRI segmentation and underscores the importance of considering long-axis representations for comprehensive cardiac evaluation.

In this research, the research team presents an automated segmentation framework for detecting anatomical structures in Cine-MRI LAX images, which are more complex than SAX orientation. The team’s comprehensive hierarchical data-augmentation strategy produces robust results, even in anomalies and image degradation, enabling accurate computation of the LVEF clinical metric. The ENet CNN architecture shows promise for whole-heart segmentation in two- and four-chamber sequences, offering compact sizes suitable for real-time applications. Although some precision loss near anatomical frontiers was noted, the segmentation quality supports its clinical utility. Additionally, a comparison with a barebone UNet architecture revealed comparable performance, suggesting potential for further optimization.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and Google News. Join our 37k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our Telegram Channel

Mahmoud is a PhD researcher in machine learning. He also holds abachelor’s degree in physical science and a master’s degree intelecommunications and networking systems. His current areas ofresearch concern computer vision, stock market prediction and deeplearning. He produced several scientific articles about person re-identification and the study of the robustness and stability of deepnetworks.

🚀 LLMWare Launches SLIMs: Small Specialized Function-Calling Models for Multi-Step Automation [Check out all the models]



Source link

Tags: AugmentationCineMRIdataDeepLearningbasedEffectExplainsLongAxisPaperSegmentation
Previous Post

Zircuit, New ZK-Rollup Focused on Security, Launches Staking Program – Blockchain News, Opinion, TV and Jobs

Next Post

Will India become the world’s largest economy by 2075? Here’s what financial experts say

Related Posts

AI Compared: Which Assistant Is the Best?
Data Science & ML

AI Compared: Which Assistant Is the Best?

June 10, 2024
5 Machine Learning Models Explained in 5 Minutes
Data Science & ML

5 Machine Learning Models Explained in 5 Minutes

June 7, 2024
Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’
Data Science & ML

Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’

June 7, 2024
How to Learn Data Analytics – Dataquest
Data Science & ML

How to Learn Data Analytics – Dataquest

June 6, 2024
Adobe Terms Of Service Update Privacy Concerns
Data Science & ML

Adobe Terms Of Service Update Privacy Concerns

June 6, 2024
Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart
Data Science & ML

Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart

June 6, 2024
Next Post
Will India become the world’s largest economy by 2075? Here’s what financial experts say

Will India become the world’s largest economy by 2075? Here’s what financial experts say

Video Highlights: How to Integrate Generative AI Into Your Business — with Piotr Grudzień

Video Highlights: How to Integrate Generative AI Into Your Business — with Piotr Grudzień

Researchers at Cornell University Introduced HiQA: An Advanced Artificial Intelligence Framework for Multi-Document Question-Answering (MDQA)

Researchers at Cornell University Introduced HiQA: An Advanced Artificial Intelligence Framework for Multi-Document Question-Answering (MDQA)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
How To Build A Quiz App With JavaScript for Beginners

How To Build A Quiz App With JavaScript for Beginners

February 22, 2024
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In