Friday, May 23, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

The History of Open-Source LLMs: Better Base Models (Part Two) | by Cameron R. Wolfe, Ph.D. | Nov, 2023

November 18, 2023
in Data Science & ML
Reading Time: 3 mins read
0 0
A A
0
Share on FacebookShare on Twitter


How LLaMA, MPT, Falcon, and LLaMA-2 put open-source LLMs on the map…

Towards Data Science

16 min read

·

19 hours ago

(Photo by Iñaki del Olmo on Unsplash)

Open-source research on large language models (LLMs) is incredibly valuable, as it aims to democratize a powerful and influential technology. Although open-source LLMs are now commonly used and widely studied, this area of research saw some initial struggles that were difficult to overcome. Namely, open-source LLMs performed poorly at first and were heavily criticized. Within this overview, we will study a line of research that changed this narrative by making high-performing pre-trained LLMs available to everyone. Given that pre-training a language model is so expensive, the models we will study here are especially impactful. After these high-performing base models were created and released, many people could conduct research using these models at marginal added cost.

“The capabilities of LLMs are remarkable considering the seemingly straightforward nature of the training methodology.” — from [14]

The current series. This overview is part two of a three part series on the history of open-source LLMs. The first part in the series overviewed initial attempts at creating open-source LLMs. Here, we will study the most popular open-source base models (i.e., language models that have been pre-trained but not fine-tuned or aligned) that are currently available. Next time, we will go over how these models can be fine-tuned or aligned to create a variety of useful applications.

(from [10, 12, 14, 15])

In part one of this series, we saw that the early days of research on open-source LLMs resulted in the proposal of several important base models, such as OPT and BLOOM. However, these models were widely considered to perform quite poorly compared to closed-source pre-trained models (e.g., GPT-3). How do we solve this? First, we need to take a deeper look at the LLM training process.

Training pipeline. LLMs are trained in several steps, as shown in the figure below. First, we pre-train the model…



Source link

Tags: BaseCameronhistoryLLMsmodelsNovOpenSourcePartPh.DWolfe
Previous Post

TDI 39 – Ryan Swanstrom

Next Post

Achieving Structured Reasoning with LLMs in Chaotic Contexts with Thread of Thought Prompting and Parallel Knowledge Graph Retrieval | by Anthony Alcaraz | Nov, 2023

Related Posts

AI Compared: Which Assistant Is the Best?
Data Science & ML

AI Compared: Which Assistant Is the Best?

June 10, 2024
5 Machine Learning Models Explained in 5 Minutes
Data Science & ML

5 Machine Learning Models Explained in 5 Minutes

June 7, 2024
Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’
Data Science & ML

Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’

June 7, 2024
How to Learn Data Analytics – Dataquest
Data Science & ML

How to Learn Data Analytics – Dataquest

June 6, 2024
Adobe Terms Of Service Update Privacy Concerns
Data Science & ML

Adobe Terms Of Service Update Privacy Concerns

June 6, 2024
Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart
Data Science & ML

Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart

June 6, 2024
Next Post
Achieving Structured Reasoning with LLMs in Chaotic Contexts with Thread of Thought Prompting and Parallel Knowledge Graph Retrieval | by Anthony Alcaraz | Nov, 2023

Achieving Structured Reasoning with LLMs in Chaotic Contexts with Thread of Thought Prompting and Parallel Knowledge Graph Retrieval | by Anthony Alcaraz | Nov, 2023

How Data Science & AI Changed Gaming Industry | Artificial Intelligence | Data Science | @SCALER

How Data Science & AI Changed Gaming Industry | Artificial Intelligence | Data Science | @SCALER

Automation Campaign | EXTREME DIFFICULTY 100x | Luxury Cars (4)

Automation Campaign | EXTREME DIFFICULTY 100x | Luxury Cars (4)

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
Accenture creates a regulatory document authoring solution using AWS generative AI services

Accenture creates a regulatory document authoring solution using AWS generative AI services

February 6, 2024
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In