Thursday, May 8, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

The AI-Powered Code Revolution: Bridging Traditional and Neurosymbolic Programming

May 21, 2024
in AI Technology
Reading Time: 2 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Generative AI models, particularly Large Language Models (LLMs), have seen a surge in adoption across various industries, transforming the software development landscape. As enterprises and startups increasingly integrate LLMs into their workflows, the future of programming is set to undergo significant changes.

Historically, symbolic programming has dominated, where developers use symbolic code to express logic for tasks or problem-solving. However, the rapid adoption of LLMs has sparked interest in a new paradigm, Neurosymbolic programming, which combines neural networks and traditional symbolic code to create sophisticated algorithms and applications.

LLMs operate by processing text inputs and generating text outputs, with prompt engineering currently being the primary programming method with these models. This approach relies heavily on constructing the right input prompts, a task that can be complex and tedious. The intricacies of generating appropriate prompts from existing code constructs can reduce code readability and maintainability. To address these challenges, several open-source libraries and research efforts, such as LangChain, Guidance, LMQL, and SGLang, have emerged. These tools aim to simplify prompt construction and facilitate LLM programming, but they still require developers to manually decide the type of prompts and the information to include.

The complexity of LLM programming largely stems from the need for more abstraction when interfacing with these models. In conventional symbolic programming, operations are conducted directly on variables or typed values. However, LLMs operate on text strings, necessitating the conversion of variables to prompts and the parsing of LLM outputs back into variables. This process introduces additional logic and complexity, highlighting a fundamental mismatch between LLM abstractions and conventional symbolic programming.

To address this, a new approach proposes treating LLMs as native code constructs and providing syntax support at the programming language level. This approach introduces a new type of “meaning” to serve as the abstraction for LLM interactions. “Meaning” refers to the semantic purpose behind the symbolic data (strings) used as LLM inputs and outputs. The language runtime should automate the process of translating conventional code constructs and meanings, termed Meaning-type Transformations (MTT), to reduce developer complexity.

A novel language feature, Semantic Strings (semstrings), is introduced to enable developers to annotate existing code constructs with additional context. Semstrings allow for the seamless integration of LLMs by providing necessary context and information, facilitating the Automatic Meaning-type Transformation (A-MTT). This automation abstracts the complexity of prompt generation and response parsing, making it easier for developers to leverage LLMs in their code.

Through real code examples, the concept of A-MTT is demonstrated to streamline common symbolic code operations, such as instantiating custom type objects, standalone function calls, and class member methods. Introducing these new abstractions and language features represents a significant contribution to the programming paradigm, enabling more efficient and maintainable integration of LLMs into conventional symbolic programming. This advancement promises to transform the future of programming, making it more accessible and less cumbersome for developers working with generative AI models.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 42k+ ML SubReddit



Source link

Tags: AIPoweredBridgingCodeNeuroSymbolicProgrammingRevolutionTraditional
Previous Post

The Power Of Identity-First Security

Next Post

Famous Crypto Expert Reveals Top 4 Altcoins That Can 100x Any Portfolio – Blockchain News, Opinion, TV and Jobs

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Famous Crypto Expert Reveals Top 4 Altcoins That Can 100x Any Portfolio – Blockchain News, Opinion, TV and Jobs

Famous Crypto Expert Reveals Top 4 Altcoins That Can 100x Any Portfolio – Blockchain News, Opinion, TV and Jobs

10 ways generative AI can be augmented with credit customer journeys

10 ways generative AI can be augmented with credit customer journeys

2024 MAD Design Fellows announced | MIT News

2024 MAD Design Fellows announced | MIT News

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In