Sunday, June 8, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Revolutionizing Robotic Surgery with Neural Networks: Overcoming Catastrophic Forgetting through Privacy-Preserving Continual Learning in Semantic Segmentation

March 11, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Deep Neural Networks (DNNs) excel in enhancing surgical precision through semantic segmentation and accurately identifying robotic instruments and tissues. However, they face catastrophic forgetting and a rapid decline in performance on previous tasks when learning new ones, posing challenges in scenarios with limited data. DNNs’ struggle with catastrophic forgetting hampers their proficiency in recognizing previously learned instruments or anatomical structures, especially when updated data is introduced, or old data is inaccessible due to privacy concerns. This limitation underscores the need for innovative solutions to ensure continual learning and data management in robot-assisted surgery.

Continual learning methods can be exemplar-based, relying on old task samples, or exemplar-free, not requiring old exemplars. However, existing approaches mainly focus on classification tasks, posing challenges for semantic segmentation due to background shift issues. In image synthesis, techniques like GAN-based synthesis and image blending/compositing are used, but they often require large data collections or simulator-based datasets. These methods may not be suitable for complex segmentation tasks and can be resource-intensive.

A recent IEEE Transactions on Medical Imaging paper addresses the limitations of DNNs in robot-assisted surgery and presents a promising solution. This privacy-preserving synthetic continual semantic segmentation framework combines open-source old instrument foregrounds with synthesized backgrounds and integrates new instrument foregrounds with extensively augmented real backgrounds. Moreover, the framework introduces innovative techniques such as overlapping class-aware temperature normalization (CAT) and multi-scale shifted-feature distillation (SD) to enhance model learning utility significantly.

The proposed methodology introduces several innovative approaches to address the challenges of continual learning in semantic segmentation, particularly in robotic surgery. It presents a privacy-preserving synthetic data generation method using StyleGAN-XL, ensuring realistic background tissue images without compromising patient privacy. This approach is a departure from relying solely on real patient data, a common practice in the field. In addition, the methodology incorporates blending and harmonization techniques to enhance the realism of synthetic images, mitigating variations in environmental factors, which are crucial for model robustness in surgical scenarios. The authors also introduced CAT, which allows for controlling learning utility for different classes, addressing the imbalance between old and new classes without catastrophic forgetting. Fourthly, the method employs multi-scale shifted-feature distillation to retain spatial relationships among semantic objects, overcoming the limitations of conventional feature distillation methods. Additionally, the synthetic CAT-SD approach combines pseudo-rehearsal with synthetic images, extending the applicability of rehearsal strategies to complex datasets without privacy concerns. Finally, by combining multiple distillation losses, including both logits and feature distillation, the methodology achieves a balance between model rigidity and flexibility, ensuring effective continual learning without compromising performance. These innovations collectively position the proposed methodology as a comprehensive solution tailored to the unique demands of semantic segmentation in robotic surgery, offering significant advancements over existing approaches.

The experiments evaluated the proposed method using EndoVis 2017 and 2018 datasets. Results demonstrated the method’s effectiveness in mitigating catastrophic forgetting and achieving balanced performance across old and new instrument classes. Additionally, robustness testing showed superior performance under various uncertainties compared to baseline methods. An ablation study was conducted to analyze the effect of hyperparameters on the proposed approach and the synthetic continual learning with CAT-SD method. It investigated the impact of temperature and scaling parameters on model performance, revealing optimal settings that significantly improved learning outcomes, especially in preserving knowledge of old classes while learning new ones. Additionally, the study underscored the importance of synthetic data generation and continual learning techniques in bolstering model robustness and preventing catastrophic forgetting. The experiments validated the proposed method’s efficacy in privacy-preserving continual learning for semantic segmentation in robotic surgery.

In conclusion, this study introduces a novel privacy-preserving synthetic continual semantic segmentation approach for robotic instrument segmentation. The developed CAT-SD scheme effectively mitigates catastrophic forgetting, addresses data scarcity, and ensures privacy in medical datasets. Extensive experiments demonstrate superior performance compared to state-of-the-art techniques, striking a balance between rigidity and plasticity. Future work will explore incremental domain adaptation techniques to enhance model adaptability further.

Check out the Paper and Github. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and Google News. Join our 38k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our Telegram Channel

You may also like our FREE AI Courses….

Mahmoud is a PhD researcher in machine learning. He also holds abachelor’s degree in physical science and a master’s degree intelecommunications and networking systems. His current areas ofresearch concern computer vision, stock market prediction and deeplearning. He produced several scientific articles about person re-identification and the study of the robustness and stability of deepnetworks.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



Source link

Tags: CatastrophicContinualForgettingLearningnetworksNeuralOvercomingPrivacyPreservingRevolutionizingroboticSegmentationSemanticsurgery
Previous Post

Leader Spotlight: Taking advantage of how humans behave, with Oji Udezue

Next Post

Fiji eyeing 5-7% increase in Indian visitors in 2024

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Fiji eyeing 5-7% increase in Indian visitors in 2024

Fiji eyeing 5-7% increase in Indian visitors in 2024

Calibrating industrial temperature sensors – gilautomation

Calibrating industrial temperature sensors – gilautomation

Why Elon Musk Had to Open Source Grok, His Answer to ChatGPT

Why Elon Musk Had to Open Source Grok, His Answer to ChatGPT

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
Accenture creates a regulatory document authoring solution using AWS generative AI services

Accenture creates a regulatory document authoring solution using AWS generative AI services

February 6, 2024
Managing PDFs in Node.js with pdf-lib

Managing PDFs in Node.js with pdf-lib

November 16, 2023
Graph neural networks in TensorFlow – Google Research Blog

Graph neural networks in TensorFlow – Google Research Blog

February 6, 2024
13 Best Books, Courses and Communities for Learning React — SitePoint

13 Best Books, Courses and Communities for Learning React — SitePoint

February 4, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In