Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Researchers from UT Austin Propose a New Machine Learning Approach to Generating Synthetic Functional Training Data that does not Require Solving a PDE (partial Differential Equations) Numerically

January 11, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


The fusion of deep learning with the resolution of partial differential equations (PDEs) marks a significant leap forward in computational science. PDEs are the backbone of myriad scientific and engineering challenges, offering crucial insights into phenomena as diverse as quantum mechanics and climate modeling. Training neural networks for solving PDEs has heavily relied on data generated by classical numerical methods like finite difference or finite element methods in earlier methods. This reliance presents a bottleneck, primarily due to these methods’ computational heaviness and limited scalability, especially for complex or high-dimensional PDEs.

Researchers from the University of Texas at Austin and Microsoft Research address this critical challenge and introduce an innovative approach for generating synthetic training data for neural operators independent of classical numerical solvers. This method substantially reduces the computational overhead associated with developing training data. The breakthrough hinges on generating vast random functions from the PDE solution space. This method provides a rich and varied dataset for training neural operators, crucial for their versatility and performance.

The in-depth methodology employed in this research is rooted in the exploitation of Sobolev spaces. Sobolev spaces are mathematical constructs that describe the environment where PDE solutions typically exist. These spaces are characterized by their basic functions, which provide a comprehensive framework for representing the solutions of PDEs. The researchers’ approach involves generating synthetic functions as random linear combinations of these basis functions. A diverse array of functions is produced by strategically manipulating these combinations, effectively representing PDEs’ extensive and complex solution space. This synthetic data generation process predominantly relies on derivative computations, contrasting sharply with traditional approaches necessitating numerically solving PDEs.

When employed in training neural operators, the synthetic data demonstrates a remarkable ability to accurately solve a wide range of PDEs. What makes these results particularly compelling is the method’s independence from classical numerical solvers, which typically limits the scope and efficiency of neural operators. The researchers conduct rigorous numerical experiments to validate their method’s effectiveness. These experiments illustrate that neural operators trained with synthetic data can handle various PDEs highly, showcasing their potential as a versatile tool in scientific computing.

By pioneering a method that bypasses the limitations of traditional data generation, the study not only enhances the efficiency of neural operators but also significantly widens their application scope. This development is poised to revolutionize the approach to solving complex, high-dimensional PDEs central to many advanced scientific inquiries and engineering designs. The innovation in data generation methodology paves the way for neural operators to tackle PDEs that were previously beyond the reach of traditional computational methods.

In conclusion, the research offers an efficient pathway for training neural operators, overcoming the traditional barriers posed by reliance on numerical PDE solutions. This breakthrough could catalyze a new era in resolving some of the most intricate PDEs, with far-reaching impacts across various scientific and engineering disciplines.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our 36k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Sana Hassan, a consulting intern at Marktechpost and dual-degree student at IIT Madras, is passionate about applying technology and AI to address real-world challenges. With a keen interest in solving practical problems, he brings a fresh perspective to the intersection of AI and real-life solutions.

[Partnership and Promotion on Marktechpost] 🐝 Now you can partner with Marktechpost to promote your Research Paper, Github Repo and even add your pro commentary in any trending research article on marktechpost.com. Elevate your and your company’s AI research visibility in the tech community…Learn more



Source link

Tags: ApproachAustindataDifferentialEquationsFunctionalgeneratingLearningMachineNumericallypartialPDEProposeRequireResearchersSolvingSynthetictraining
Previous Post

10 Reasons Why Parental Control Is Important in 2024

Next Post

Histadrut agrees to workers financing reserve soldier grants

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Histadrut agrees to workers financing reserve soldier grants

Histadrut agrees to workers financing reserve soldier grants

Money managers pick stocks for 2024 that aren’t the Magnificent Seven

Money managers pick stocks for 2024 that aren't the Magnificent Seven

Amazon ECS supports a native integration with Amazon EBS volumes for data-intensive workloads

Amazon ECS supports a native integration with Amazon EBS volumes for data-intensive workloads

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In