Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Researchers from UT Austin Introduce MUTEX: A Leap Towards Multimodal Robot Instruction with Cross-Modal Reasoning

September 29, 2023
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Researchers have introduced a cutting-edge framework called MUTEX, short for “MUltimodal Task specification for robot EXecution,” aimed at significantly advancing the capabilities of robots in assisting humans. The primary problem they tackle is the limitation of existing robotic policy learning methods, which typically focus on a single modality for task specification, resulting in robots that are proficient in one area but need help to handle diverse communication methods.

MUTEX takes a groundbreaking approach by unifying policy learning from various modalities, allowing robots to understand and execute tasks based on instructions conveyed through speech, text, images, videos, and more. This holistic approach is a pivotal step towards making robots versatile collaborators in human-robot teams.

The framework’s training process involves a two-stage procedure. The first stage combines masked modeling and cross-modal matching objectives. Masked modeling encourages cross-modal interactions by masking certain tokens or features within each modality and requiring the model to predict them using information from other modalities. This ensures that the framework can effectively leverage information from multiple sources.

In the second stage, cross-modal matching enriches the representations of each modality by associating them with the features of the most information-dense modality, which is video demonstrations in this case. This step ensures that the framework learns a shared embedding space that enhances the representation of task specifications across different modalities.

MUTEX’s architecture consists of modality-specific encoders, a projection layer, a policy encoder, and a policy decoder. It utilizes modality-specific encoders to extract meaningful tokens from input task specifications. These tokens are then processed through a projection layer before being passed to the policy encoder. The policy encoder, employing a transformer-based architecture with cross- and self-attention layers, fuses information from various task specification modalities and robot observations. This output is then sent to the policy decoder, which leverages a Perceiver Decoder architecture to generate features for action prediction and masked token queries. Separate MLPs are used to predict continuous action values and token values for the masked tokens.

To evaluate MUTEX, the researchers created a comprehensive dataset with 100 tasks in a simulated environment and 50 tasks in the real world, each annotated with multiple instances of task specifications in different modalities. The results of their experiments were promising, showing substantial performance improvements over methods trained solely for single modalities. This underscores the value of cross-modal learning in enhancing a robot’s ability to understand and execute tasks. Text Goal and Speech Goal, Text Goal and Image Goal, and Speech Instructions and Video Demonstration have obtained 50.1, 59.2, and 59.6 success rates, respectively.

In summary, MUTEX is a groundbreaking framework that addresses the limitations of existing robotic policy learning methods by enabling robots to comprehend and execute tasks specified through various modalities. It offers promising potential for more effective human-robot collaboration, although it does have some limitations that need further exploration and refinement. Future work will focus on addressing these limitations and advancing the framework’s capabilities.

Check out the Paper and Code. All Credit For This Research Goes To the Researchers on This Project. Also, don’t forget to join our 30k+ ML SubReddit, 40k+ Facebook Community, Discord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more.

If you like our work, you will love our newsletter..

Pragati Jhunjhunwala is a consulting intern at MarktechPost. She is currently pursuing her B.Tech from the Indian Institute of Technology(IIT), Kharagpur. She is a tech enthusiast and has a keen interest in the scope of software and data science applications. She is always reading about the developments in different field of AI and ML.

🚀 The end of project management by humans (Sponsored)



Source link

Tags: AustinCrossModalInstructionIntroduceLeapMultimodalMUTEXReasoningResearchersrobot
Previous Post

Why SQL is the Must-Learn Language – Dataquest

Next Post

Explained: Johnson Controls Ransomware Attack

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Explained: Johnson Controls Ransomware Attack

Explained: Johnson Controls Ransomware Attack

August 2023 Robotics Investments Total US $2.1 Billion

August 2023 Robotics Investments Total US $2.1 Billion

Taking on the Meme Coin Market With a $1 Billion Vision – Blockchain News, Opinion, TV and Jobs

Taking on the Meme Coin Market With a $1 Billion Vision – Blockchain News, Opinion, TV and Jobs

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In