Thursday, May 8, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Researchers from the University of Washington Introduce Fiddler: A Resource-Efficient Inference Engine for LLMs with CPU-GPU Orchestration

February 27, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Mixture-of-experts (MoE) models have revolutionized artificial intelligence by enabling the dynamic allocation of tasks to specialized components within larger models. However, a major challenge in adopting MoE models is their deployment in environments with limited computational resources. The vast size of these models often surpasses the memory capabilities of standard GPUs, restricting their use in low-resource settings. This limitation hampers the models’ effectiveness and challenges researchers and developers aiming to leverage MoE models for complex computational tasks without access to high-end hardware.

Existing methods for deploying MoE models in constrained environments typically involve offloading part of the model computation to the CPU. While this approach helps manage GPU memory limitations, it introduces significant latency due to the slow data transfers between the CPU and GPU. State-of-the-art MoE models also often employ alternative activation functions, such as SiLU, which makes it challenging to apply sparsity-exploiting strategies directly. Pruning channels not close enough to zero could negatively impact the model’s performance, requiring a more sophisticated approach to leverage sparsity.

A team of researchers from the University of Washington has introduced Fiddler, an innovative solution designed to optimize the deployment of MoE models by efficiently orchestrating CPU and GPU resources. Fiddler minimizes the data transfer overhead by executing expert layers on the CPU, reducing the latency associated with moving data between CPU and GPU. This approach addresses the limitations of existing methods and enhances the feasibility of deploying large MoE models in resource-constrained environments.

Fiddler distinguishes itself by leveraging the computational capabilities of the CPU for expert layer processing while minimizing the volume of data transferred between the CPU and GPU. This methodology drastically cuts down the latency for CPU-GPU communication, enabling the system to run large MoE models, such as the Mixtral-8x7B with over 90GB of parameters, efficiently on a single GPU with limited memory. Fiddler’s design showcases a significant technical innovation in AI model deployment.

Fiddler’s effectiveness is underscored by its performance metrics, which demonstrate an order of magnitude improvement over traditional offloading methods. The performance is measured by the number of tokens generated per second. Fiddler successfully ran the uncompressed Mixtral-8x7B model in tests, rendering over three tokens per second on a single 24GB GPU. It improves with longer output lengths for the same input length, as the latency of the prefill stage is amortized. On average, Fiddler is faster than Eliseev Mazur by 8.2 times to 10.1 times and quicker than DeepSpeed-MII by 19.4 times to 22.5 times, depending on the environment.

In conclusion, Fiddler represents a significant leap forward in enabling the efficient inference of MoE models in environments with limited computational resources. By ingeniously utilizing CPU and GPU for model inference, Fiddler overcomes the prevalent challenges faced by traditional deployment methods, offering a scalable solution that enhances the accessibility of advanced MoE models. This breakthrough can potentially democratize large-scale AI models, paving the way for broader applications and research in artificial intelligence.

Check out the Paper and Github. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and Google News. Join our 38k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our Telegram Channel

You may also like our FREE AI Courses….

Nikhil is an intern consultant at Marktechpost. He is pursuing an integrated dual degree in Materials at the Indian Institute of Technology, Kharagpur. Nikhil is an AI/ML enthusiast who is always researching applications in fields like biomaterials and biomedical science. With a strong background in Material Science, he is exploring new advancements and creating opportunities to contribute.

🚀 LLMWare Launches SLIMs: Small Specialized Function-Calling Models for Multi-Step Automation [Check out all the models]



Source link

Tags: CPUGPUengineFiddlerinferenceIntroduceLLMsOrchestrationResearchersResourceEfficientUniversityWashington
Previous Post

Chinese airlines can boost US flights to 50 per week, US says By Reuters

Next Post

How To Build A Rock, Paper, Scissors Game Using JavaScript

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
How To Build A Rock, Paper, Scissors Game Using JavaScript

How To Build A Rock, Paper, Scissors Game Using JavaScript

101 Blockchains Named as Top Education Software Product on G2 for 2024

101 Blockchains Named as Top Education Software Product on G2 for 2024

Co-op to transition from data centres to cloud with TCS

Co-op to transition from data centres to cloud with TCS

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In