Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Researchers from Stanford and Microsoft Introduce Self-Improving AI: Leveraging GPT-4 to Elevate Scaffolding Program Performance

October 17, 2023
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Almost every aim described in natural language may be optimized by querying a language model. However, a program may frequently provide outputs with greater objective values by making several organized calls to a language model. They refer to these as “scaffolding” programs, and they are often created (by people) using a computer language like Python. Their main finding is that a scaffolding program’s design is an optimization issue for any distribution over optimization problems and any given language model. Researchers from Microsoft Research and Stanford University in this paper describe the Self-Taught Optimizer (STOP), a technique in which the recursive application of code that uses a language model to enhance any given solution leads to self-improvement. 

Their method starts with an initial seed “improver” scaffolding program that uses the language model to enhance a response to a subsequent challenge. The model improves this improver program as the system iterates. To measure the effectiveness of their self-optimizing architecture, they apply a limited selection of downstream algorithmic tasks. Their findings show that the model improves as it runs through more iterations using its self-improvement techniques. STOP demonstrates how language models may function as their meta-optimizers in this way. In addition, they analyze the kind of self-improvement tactics the model (see Figure 1) suggests, how well the recommended strategies translate to downstream tasks, and if the model is vulnerable to risky self-improvement techniques. 

Figure 1: Examples of self-improvement techniques suggested and used by GPT-4 are shown here. The arbitrary code, including the scaffolding code itself, is then revised using each technique as scaffolding.

Since the underlying language model is unaltered, this issue is known as recursively self-improving code generation, which is inspired by but not entirely a Recursively Self-Improving (RSI) system. It has been at least 50 years since researchers formalized the concept of RSI. That effort, however, concentrated on creating systems that were more competent in general and made the assumption that the model could improve every part of its code. Their research is a modest step in that direction because it only considers the model’s capacity to enhance the scaffold that invokes it iteratively. The RSI-code-generation problem is first stated mathematically well-defined in this study. 

Then, they create and assess STOP to illustrate the possible use of RSI-code generation. Different downstream jobs have demonstrated improvements. When utilizing a version of the GPT-4 language model trained on data up to 2021, far in advance of the debut of most scaffolding systems, Figure 1 demonstrates a few of the intriguing and useful scaffolds STOP offers. Additional tests track how frequently the model tries to turn off a sandbox flag. Finally, they tackle issues with the ethical development of such technology. 

The main contributions of this work are:

  • Formulating a meta-optimization strategy where a scaffolding system recursively improves itself.
  • Demonstrating that this system can successfully recursively improve itself using a modern language model (GPT-4 in particular).
  • Examining the self-improvement techniques proposed and implemented by the model, including how the model avoids safety precautions like a sandbox.

Check out the Paper. All Credit For This Research Goes To the Researchers on This Project. Also, don’t forget to join our 31k+ ML SubReddit, 40k+ Facebook Community, Discord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more.

If you like our work, you will love our newsletter.

We are also on WhatsApp. Join our AI Channel on Whatsapp.

Aneesh Tickoo is a consulting intern at MarktechPost. He is currently pursuing his undergraduate degree in Data Science and Artificial Intelligence from the Indian Institute of Technology(IIT), Bhilai. He spends most of his time working on projects aimed at harnessing the power of machine learning. His research interest is image processing and is passionate about building solutions around it. He loves to connect with people and collaborate on interesting projects.

▶️ Now Watch AI Research Updates On Our Youtube Channel [Watch Now]



Source link

Tags: ElevateGPT4IntroduceLeveragingMicrosoftPerformanceProgramResearchersScaffoldingSelfImprovingStanford
Previous Post

Quantum Machine Learning Explained

Next Post

Baidu claims Ernie AI chatbot is now as good as ChatGPT

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Baidu claims Ernie AI chatbot is now as good as ChatGPT

Baidu claims Ernie AI chatbot is now as good as ChatGPT

Prompting Isn’t The Most Important Skill – O’Reilly

Prompting Isn’t The Most Important Skill – O’Reilly

First Trade: Zee Business Live | Share Market Live Updates | Stock Market News | 5th September 2023

First Trade: Zee Business Live | Share Market Live Updates | Stock Market News | 5th September 2023

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In