Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Researchers from Meta GenAI Introduce Fairy: Fast Parallelized Instruction-Guided Video-to-Video Synthesis Artificial Intelligence Framework

December 28, 2023
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Artificial intelligence has recently been used in all spheres of life. Likewise, it is being used for video generation and video editing. AI has opened up new possibilities for creativity, enabling seamless content generation and manipulation. However, video editing remains challenging due to the intricate nature of maintaining temporal coherence between individual frames. The Traditional approaches to video editing addressed this issue by tracking pixel movement via optical flow or reconstructing videos as layered representations. However, these techniques are prone to failure when confronted with videos featuring large motions or complex dynamics because pixel tracking remains an unresolved problem in computer vision.

Consequently, the researchers of Meta GenAI have introduced Fairy, a novel and efficient video-to-video synthesis framework designed specifically for instruction-guided video editing tasks. Fairy takes a video input with N frames and uses the natural language editing instruction to create a new video that follows the given instruction while maintaining the semantic context of the original video. Fairy uses an anchor-based cross-frame attention mechanism that transfers diffusion features among adjacent frames. By this technique, Fairy produces 120-frame 512 × 384 resolution videos in just 14 seconds, which marks a considerable improvement of at least 44x compared to earlier state-of-the-art systems.

Fairy can also preserve temporal consistency throughout the editing process. Researchers used a unique data augmentation strategy that imparts affine transformation equivalence onto the model. Consequently, the system can effectively manage alterations in both source and target images, further bolstering its performance, especially when dealing with videos characterized by expansive motion or intricate dynamics.

The developers devised a scheme where value attributes extracted from carefully selected anchor frames are propagated to candidate frames via cross-frame attention mechanisms. This subsequently enables the establishment of an attention map serving as a similarity measure, ultimately finetuning and harmonizing feature representations spanning various frames. This design substantially diminishes feature discrepancies, culminating in enhanced temporal uniformity in the final outputs.

The researchers evaluated the model by subjecting it to rigorous evaluations encompassing 1000 generated videos. The researchers found that Fairy demonstrated superior visual qualities to previous state-of-the-art systems. Moreover, it exhibited an impressive speed enhancement exceeding 44x, courtesy of eight GPU-enabled parallel processing capacities. But it also has some limitations. Despite identical text prompts and random initialization noises, it can have slight inconsistencies within input frames. These abnormalities can result from affine modifications performed to inputs or small changes occurring within video sequences.

In conclusion, Meta’s Fairy is a transformative leap forward in video editing and artificial intelligence. With its outstanding temporal consistency and video synthesis, Fairy establishes itself as a benchmark for quality and efficiency in the industry. Users can generate high-resolution videos at exceptional speeds due to the innovative use of image-editing diffusion models, anchor-based cross-frame attention, and equivariant fine-tuning.

Check out the Paper and Project. All credit for this research goes to the researchers of this project. Also, don’t forget to join our 35k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more.

If you like our work, you will love our newsletter..

Rachit Ranjan is a consulting intern at MarktechPost . He is currently pursuing his B.Tech from Indian Institute of Technology(IIT) Patna . He is actively shaping his career in the field of Artificial Intelligence and Data Science and is passionate and dedicated for exploring these fields.

🚀 Boost your LinkedIn presence with Taplio: AI-driven content creation, easy scheduling, in-depth analytics, and networking with top creators – Try it free



Source link

Tags: artificialFairyFastFrameworkgenAIInstructionGuidedintelligenceIntroduceMetaParallelizedResearcherssynthesisVideotoVideo
Previous Post

Four Constraints That Fuel Deeper Creative Output

Next Post

Fed Surveys Predicts Reduced Hiring By Quiver Quantitative

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Fed Surveys Predicts Reduced Hiring By Quiver Quantitative

Fed Surveys Predicts Reduced Hiring By Quiver Quantitative

🟢WOW Bitcoin and Altcoins PUMP HARD

🟢WOW Bitcoin and Altcoins PUMP HARD

Using Figma’s Jambot AI to uplevel designs

Using Figma’s Jambot AI to uplevel designs

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In