Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Researchers from Korea University Unveil HierSpeech++: A Groundbreaking AI Approach for High-Fidelity, Efficient Text-to-Speech and Voice Conversion

November 30, 2023
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Researchers at Korea University have developed a new speech synthesizer called HierSpeech++. This research aims to create synthetic speech that is robust, expressive, natural, and human-like. The team aimed to achieve this without relying on a text-speech paired dataset and to improve existing models’ shortcomings. HierSpeech++ was designed to bridge the semantic and acoustic representation gap in speech synthesis, ultimately improving style adaptation.

Until now, zero-shot speech synthesis based on LLM has had limitations. However, HierSpeech++ has been developed to address these limitations and improve robustness and expressiveness while addressing issues related to slow inference speed. By utilizing a text-to-vec framework that generates self-supervised speech and F0 representations based on text and prosody prompts, HierSpeech++ has been proven to outperform LLM-based and diffusion-based models. These speed, robustness, and quality advancements establish HierSpeech++ as a powerful zero-shot speech synthesizer.

HierSpeech++ uses a hierarchical framework for generating speech without prior training. It employs a text-to-vec framework to develop self-supervised address and F0 representations based on text and prosody prompts. Speech is produced using a hierarchical variational autoencoder and a generated vector, F0, and voice prompt. The method also includes an efficient speech super-resolution framework. Comprehensive assessment uses various pre-trained models and implementations with objective and subjective metrics such as log-scale Mel error distance, perceptual evaluation of speech quality, pitch, periodicity, voice/unvoice F1 score, naturalness, mean opinion score, and voice similarity MOS.

Superior naturalness in synthetic speech is achieved by HierSpeech++ in zero-shot scenarios, with enhancements in robustness, expressiveness, and speaker similarity. Subjective metrics like naturalness mean opinion score and voice similarity MOS were used to assess the innocence of the speech, and the results showed that HierSpeech++ outperforms ground-truth speech. Incorporating a speech super-resolution framework from 16 kHz to 48 kHz further improved the naturalness of the address. Experimental results also demonstrated that the hierarchical variational autoencoder in HierSpeech++ is superior to LLM-based and diffusion-based models, making it a robust zero-shot speech synthesizer. It was also found that zero-shot text-to-speech synthesis with noisy prompts validated the effectiveness of HierSpeech++ in generating speech from unseen speakers. The hierarchical synthesis framework also allows for versatile prosody and voice style transfer, making synthesized speech even more flexible.

In conclusion, HierSpeech presents an efficient and potent framework for achieving human-level quality in zero-shot speech synthesis. Its disentangling of semantic modeling, speech synthesis, super-resolution, and facilitation of prosody and voice style transfer enhance synthesized speech flexibility. The system demonstrates robustness, expressiveness, naturalness, and speaker similarity improvements even with a small-scale dataset and offers significantly faster inference speeds. The study also explores potential extensions to cross-lingual and emotion-controllable speech synthesis models.

Check out the Paper, Project and Github. All credit for this research goes to the researchers of this project. Also, don’t forget to join our 33k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more.

If you like our work, you will love our newsletter..

\"\"

Sana Hassan, a consulting intern at Marktechpost and dual-degree student at IIT Madras, is passionate about applying technology and AI to address real-world challenges. With a keen interest in solving practical problems, he brings a fresh perspective to the intersection of AI and real-life solutions.

↗ Step by Step Tutorial on \’How to Build LLM Apps that can See Hear Speak\’



Source link

Tags: ApproachconversionEfficientGroundbreakingHierSpeechHighFidelityKoreaResearchersTexttoSpeechUniversityUnveilVoice
Previous Post

Package and deploy classical ML and LLMs easily with Amazon SageMaker, part 2: Interactive User Experiences in SageMaker Studio

Next Post

October 2023 Robotics Investments Equals $980 Million

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
October 2023 Robotics Investments Equals $980 Million

October 2023 Robotics Investments Equals $980 Million

Open AI’s CEO Sam Altman SHOCKING UPDATE About GPT-5 (GPT-5 Update)

Open AI's CEO Sam Altman SHOCKING UPDATE About GPT-5 (GPT-5 Update)

How to Start YouTube Automation 2023 (STEP BY STEP) NO FACE! NO CAMERA! & Make MONEY!

How to Start YouTube Automation 2023 (STEP BY STEP) NO FACE! NO CAMERA! & Make MONEY!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In