Friday, May 9, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Researchers from Genentech Propose A Deep Learning Methodology to Discover a Predictive Tumor Dynamic Model from Longitudinal Clinical Data

November 25, 2023
in Data Science & ML
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Researchers from Genentech introduced tumor dynamic neural-ODE (TDNODE) as a pharmacology-informed neural network for enhancing tumor dynamic modeling in oncology drug development. Overcoming the limitations of existing models, TDNODE allows unbiased predictions from truncated data. Its encoder-decoder architecture expresses an underlying dynamical law with generalized homogeneity, representing kinetic rate metrics with inverse time as the unit. The generated metrics accurately predict patients’ overall survival, showcasing TDNODE’s utility in principled oncology disease modeling and improving personalized therapy decision-making.

TDNODE’s encoder-decoder architecture expresses a time-homogeneous dynamical law, generating metrics for accurate patients’ overall survival predictions. The proposed formalism enables principled integration of multimodal dynamical datasets in oncology disease modeling. The study specifies dimensions for the initial condition encoder output and GRU hidden layers. The implementation uses torchdiffeq, PyTorch, Pandas, Numpy, Scipy, Lifelines, Shap, and Matplotlib for solving, development, and analysis.

The study explores tumor growth dynamics using mathematical models, emphasizing the historical success of such models in describing experimental data. While non-linear mixed-effects modeling is common in pharmacometrics, machine learning has been underutilized for deriving metrics. The TDNODE framework integrates neural ODEs and ML, aiming to mine large oncology datasets for accurate predictions and enhanced understanding. The study aims to predict future patient outcomes early, enabling personalized therapy and advancing drug development through interpretable ML models.

TDNODE is a system that uses two encoders and a decoder based on an ODE solver. It employs a recurrent neural network to determine initial conditions and an attention-based LSTM to assess tumor kinetic parameters. Using numerical integration, the decoder represents the ODE system as a neural network and predicts tumor size over time. The Reducer component condenses the state vector for comparison with the tumor size.

The TDNODE model surpasses existing limitations by making unbiased predictions from truncated data and generating kinetic rate metrics for highly accurate overall survival predictions. TDNODE integrated multimodal dynamical datasets in oncology disease modeling, demonstrating its versatility and providing a principled approach for combining diverse data types. Continuous longitudinal tumor size predictions were generated for training and test sets, employing an ADAM optimization approach during 150 epochs with specified hyperparameters, achieving accurate predictions through careful configuration of L2 weight decay, learning rate, ODE tolerance, batch size, and observation window.

By utilizing kinetic rate metrics, TDNODE can provide highly precise predictions of survival rates even when working with incomplete or truncated data sets. This advanced approach overcomes the limitations of traditional survival analysis methods, which often need to be able to account for incomplete or missing data accurately. With TDNODE’s cutting-edge technology, researchers and healthcare professionals can obtain a more detailed understanding of patient outcomes, leading to better-informed treatment decisions and improved clinical outcomes. 

Further research avenues for TDNODE include exploring the incorporation of dosing or pharmacokinetics factors and enhancing the model’s comprehensiveness. Validation across diverse datasets will assess TDNODE’s generalizability in predicting future tumor sizes. Investigating TDNODE’s potential in personalized therapy is a promising direction, leveraging its ability for model discovery from longitudinal tumor data to support individualized treatment decisions. Exploring TDNODE in disease modeling beyond oncology could offer insights into its applicability and effectiveness in diverse medical contexts.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to join our 33k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more.

If you like our work, you will love our newsletter..

\"\"

Hello, My name is Adnan Hassan. I am a consulting intern at Marktechpost and soon to be a management trainee at American Express. I am currently pursuing a dual degree at the Indian Institute of Technology, Kharagpur. I am passionate about technology and want to create new products that make a difference.

↗ Step by Step Tutorial on \’How to Build LLM Apps that can See Hear Speak\’



Source link

Tags: ClinicaldataDeepDiscoverdynamicGenentechLearningLongitudinalMethodologymodelPredictiveProposeResearchersTumor
Previous Post

Binance’s MVB Accelerator Program Collaborates with CMC Labs to Launch Innovative Founder Track

Next Post

Worst Cloud Computing Career Mistakes to Avoid in 2023

Related Posts

AI Compared: Which Assistant Is the Best?
Data Science & ML

AI Compared: Which Assistant Is the Best?

June 10, 2024
5 Machine Learning Models Explained in 5 Minutes
Data Science & ML

5 Machine Learning Models Explained in 5 Minutes

June 7, 2024
Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’
Data Science & ML

Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’

June 7, 2024
How to Learn Data Analytics – Dataquest
Data Science & ML

How to Learn Data Analytics – Dataquest

June 6, 2024
Adobe Terms Of Service Update Privacy Concerns
Data Science & ML

Adobe Terms Of Service Update Privacy Concerns

June 6, 2024
Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart
Data Science & ML

Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart

June 6, 2024
Next Post
Worst Cloud Computing Career Mistakes to Avoid in 2023

Worst Cloud Computing Career Mistakes to Avoid in 2023

How to learn AI and get RICH in the AI revolution

How to learn AI and get RICH in the AI revolution

13 June 2023 – Economic Times Newspaper- Daily Business News Analysis

13 June 2023 - Economic Times Newspaper- Daily Business News Analysis

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In