Thursday, May 8, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Researchers at Stanford Propose a Family of Representation Finetuning (ReFT) Methods that Operates on a Frozen Base Model and Learn Task-Specific Interventions on Hidden Representations

April 16, 2024
in AI Technology
Reading Time: 3 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Pretrained language models (LMs) are commonly finetuned to adapt them to new domains or tasks, a process known as finetuning. While finetuning allows for adaptation to various functions with small amounts of in-domain data, it can be prohibitively expensive for large LMs.

Parameter-efficient finetuning (PEFT) methods offer a solution by updating only a fraction of the weights, reducing memory usage and training time. Adapters, a common PEFT approach, learn edits that can be added to a subset of model weights or operate alongside the frozen base model. Recent advancements like LoRA and its variants reduce the number of trainable parameters by using low-rank approximations during adapter training.

However, a significant aspect of current PEFT methods is their focus on modifying weights rather than representations, despite prior research indicating that representations encode rich semantic information. Representation Finetuning (ReFT) methods have been proposed in response to this by a team of researchers from Stanford and Pr(Ai)2R Group.

Instead of adapting model weights, ReFT methods train interventions to manipulate a small fraction of model representations, steering model behaviors to solve downstream tasks at inference time. Their approach draws inspiration from recent work in LM interpretability, which intervenes on representations to identify causal mechanisms and steer model behaviors at inference time.

One notable instance of the ReFT family is the Low-rank Linear Subspace ReFT (LoReFT), which intervenes on hidden representations in the linear subspace spanned by a low-rank projection matrix. LoReFT builds directly on existing methods like distributed alignment search (DAS), demonstrating state-of-the-art performance on various benchmarks while using significantly fewer parameters than traditional PEFT methods. Their results suggest that ReFT methods offer more efficient and effective alternatives to weight-based PEFTs, deserving further exploration across different model families and domains.

Future research directions for ReFT include exploring its effectiveness on other model families and vision-language models and automating hyperparameter search. Additionally, investigating more effective interventions for specific tasks and exploring the power of learned orthogonal subspaces are areas of interest. ReFT advances neural network interpretability research and contributes insights back to the field, challenging traditional approaches to interpreting individual neurons in isolation.

In terms of evaluation practices, it’s essential to establish benchmarks that allow for fair comparisons of PEFTs and ReFTs, including compute- or time-matched hyperparameter-tuning comparisons and disallowing tuning or model selection based on the test set to mitigate overfitting and ensure real-world performance assessment.

Check out the Paper and Github. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter.

Don’t Forget to join our 40k+ ML SubReddit.

Arshad is an intern at MarktechPost. He is currently pursuing his Int. MSc Physics from the Indian Institute of Technology Kharagpur. Understanding things to the fundamental level leads to new discoveries which lead to advancement in technology. He is passionate about understanding the nature fundamentally with the help of tools like mathematical models, ML models and AI.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



Source link

Tags: BaseFamilyFineTuningfrozenHiddenInterventionsLearnMethodsmodelOperatesProposeReFTRepresentationRepresentationsResearchersStanfordTaskspecific
Previous Post

Samsung Secures $6.4 Billion in US Government Grants for Chip Manufacturing Expansion in Texas

Next Post

How to Explain Reasons for Job Change in Interviews? [2024]

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
How to Explain Reasons for Job Change in Interviews? [2024]

How to Explain Reasons for Job Change in Interviews? [2024]

Toyota Innova Hycross GX (O) Variant Introduced: Check what’s new | Know ex-showroom price, mileage, other details

Toyota Innova Hycross GX (O) Variant Introduced: Check what's new | Know ex-showroom price, mileage, other details

Three reasons robots are about to become way more useful

Three reasons robots are about to become way more useful

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In