Friday, May 16, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Researchers at Oxford Presented Policy-Guided Diffusion: A Machine Learning Method for Controllable Generation of Synthetic Trajectories in Offline Reinforcement Learning RL

April 16, 2024
in AI Technology
Reading Time: 3 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Reinforcement learning (RL) faces challenges due to sample inefficiency, hindering real-world adoption. Standard RL methods struggle, particularly in environments where exploration is risky. However, offline RL utilizes pre-collected data to optimize policies without online data collection. Yet, a distribution shift between the target policy and collected data presents hurdles, leading to an out-of-sample issue. This discrepancy results in overestimation bias, potentially yielding an overly optimistic target policy. This highlights the need to address distribution shifts for effective offline RL implementation.

Prior research addresses this by explicitly or implicitly regularizing the policy toward behavior distribution. Another approach involves learning a single-step world model from the offline dataset to generate trajectories for the target policy, aiming to mitigate distribution shifts. However, this method may introduce generalization issues within the world model itself, potentially exacerbating value overestimation bias in RL policies.

Researchers from Oxford University present policy-guided diffusion (PGD) to address the issue of compounding error in offline RL by modeling entire trajectories rather than single-step transitions. PGD trains a diffusion model on the offline dataset to generate synthetic trajectories under the behavior policy. To align these trajectories with the target policy, guidance from the target policy is applied to shift the sampling distribution. This results in a behavior-regularized target distribution, reducing divergence from the behavior policy and limiting generalization error.

PGD utilizes a trajectory-level diffusion model trained on an offline dataset to approximate the behavior distribution. Inspired by classifier-guided diffusion, PGD incorporates guidance from the target policy during the denoising process to steer trajectory sampling toward the target distribution. This results in a behavior-regularized target distribution, balancing action likelihoods under both policies. PGD excludes behavior policy guidance, focusing solely on target policy guidance. To control guidance strength, PGD introduces guidance coefficients, allowing for fine-tuning of the regularization level towards the behavior distribution. Also, PGD applies a cosine guidance schedule and stabilization techniques to enhance guidance stability and reduce dynamic error.

The experiments conducted demonstrate the following key findings:

Effectiveness of PGD: Agents trained with synthetic experience from PGD outperform those trained on unguided synthetic data or directly on the offline dataset.

Guidance Coefficient Tuning: Tuning the guidance coefficient in PGD enables the sampling of trajectories with high action likelihood across a range of target policies. As the guidance coefficient increases, trajectory likelihood under each target policy increases monotonically, indicating the ability to sample high-probability trajectories with out-of-distribution (OOD) target policies.

Low Dynamics Error: Despite sampling high-likelihood actions from the policy, PGD retains low dynamics error. Compared to an autoregressive world model (PETS), PGD achieves significantly lower error across all target policies, highlighting its robustness to different target policies.

Training Stability: Periodic generation of synthetic data outperforms continuous generation, attributed to training stability, especially when performing guidance early in training. Both approaches consistently outperform training on real and unguided synthetic data, demonstrating the potential of PGD as an extension to replay and model-based RL methods.

To conclude, Oxford researchers introduced PGD, offering a controllable method for synthetic trajectory generation in offline RL. By directly modeling trajectories and utilizing policy guidance, PGD achieves competitive performance compared to autoregressive methods like PETS, with lower dynamics error. This approach consistently improves downstream agent performance across diverse environments and behavior policies. PGD addresses out-of-sample issues, paving the way for less conservative algorithms in offline RL with the potential for further enhancements.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter.

Don’t Forget to join our 40k+ ML SubReddit

Want to get in front of 1.5 Million AI Audience? Work with us here



Source link

Tags: ControllableDiffusionGenerationLearningMachineMethodOfflineOxfordPolicyGuidedPresentedreinforcementResearchersSyntheticTrajectories
Previous Post

Travel Photography Tips For Capturing Your Adventures – Internet Parrot

Next Post

PyTorch Releases torchtune for Easily Fine-Tuning LLMs

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
PyTorch Releases torchtune for Easily Fine-Tuning LLMs

PyTorch Releases torchtune for Easily Fine-Tuning LLMs

Teledyne FLIR IIS announces new Bumblebee X stereo vision camera

Teledyne FLIR IIS announces new Bumblebee X stereo vision camera

Amazon CloudWatch Internet Weather Map – View and analyze internet health

Amazon CloudWatch Internet Weather Map – View and analyze internet health

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
How To Build A Quiz App With JavaScript for Beginners

How To Build A Quiz App With JavaScript for Beginners

February 22, 2024
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In