Thursday, May 8, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Researchers at Cornell University Introduced HiQA: An Advanced Artificial Intelligence Framework for Multi-Document Question-Answering (MDQA)

February 24, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


A significant challenge with question-answering (QA) systems in Natural Language Processing (NLP) is their performance in scenarios involving extensive collections of documents that are structurally similar or ‘indistinguishable.’ Traditional models often need help to retrieve accurate information from such massive, homogeneous datasets, leading to issues in the precision and relevance of the responses. This limitation becomes particularly pronounced in multi-document QA (MDQA) tasks, where the system must discern and integrate details across numerous documents to formulate coherent answers.

Current methods in MDQA rely on Retrieval-Augmented Generation (RAG) for extracting critical data from unstructured texts, showing effectiveness across diverse NLP tasks. RAG can also be applied to multimodal tasks, such as image generation, using a pre-trained CLIP model for retrieval. Some work has integrated the reasoning capabilities of Language Models (LLMs) into RAG, actively determining the need for retrieval and evaluating the relevance of context. Document QA systems like PDFTriage and PaperQA address structured document QA tasks by extracting structural elements and gathering evidence from relevant papers. Multi-document QA is more challenging and requires considering relationships between documents. Knowledge graphs and LLMs are used to model these relationships.

Researchers from Cornell University have introduced HiQA, a novel framework developed by integrating cascading metadata and a multi-route retrieval mechanism. This method represents a significant departure from conventional ‘hard partitioning’ techniques, employing a ‘soft partitioning’ approach to augment document segments with metadata. This strategy ensures enhanced cohesion within the embedding space, facilitating more precise and relevant knowledge retrieval across multi-document environments.

HiQA’s methodology revolves around three core components: a Markdown Formatter (MF) for document parsing, a Hierarchical Contextual Augmentor (HCA) for metadata extraction and augmentation, and a Multi-Route Retriever (MRR) to enhance retrieval accuracy. The MF transforms source documents into markdown files, delineating each section into distinct chapters. The Hierarchical Contextual Augmentor (HCA) enriches these segments with hierarchical metadata, optimizing the information structure for retrieval. Lastly, the MRR employs a sophisticated approach, leveraging vector similarity, Elastic search, and keyword matching to meticulously select the most relevant segments.

HiQA excels in complex cross-document tasks, showcasing a remarkable ability to succinctly organize and present relevant information. This performance is attributed to its integration of cascading metadata and the strategic use of a multi-route retrieval mechanism. The MasQA dataset is introduced to evaluate the proposed framework, consisting of technical manuals, a college textbook, and public financial reports, which contain various types of questions, such as single and multiple-choice, descriptive, comparative, table, and calculation questions. The Log-Rank Index is proposed as a novel evaluation metric to measure the RAG algorithm’s effectiveness in document ranking. PCA and tSNE visualizations demonstrate that HCA leads to a more compact distribution and enhances the focus of the RAG algorithm on the target domain.

In conclusion, the introduction of HiQA signifies a groundbreaking advancement in MDQA, addressing the critical challenge of efficiently processing and retrieving information from large-scale indistinguishable documents. By employing a soft partitioning approach and enhancing retrieval mechanisms, HiQA offers a robust solution that outperforms traditional methods. This research contributes to the theoretical understanding of document segment distribution in the embedding space and presents practical implications for various applications. The development and validation of HiQA pave the way for future innovations in the field, promising enhanced accessibility and precision in information retrieval across diverse domains.

Check out the Paper and Github. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and Google News. Join our 37k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter.

Don’t Forget to join our Telegram Channel

Nikhil is an intern consultant at Marktechpost. He is pursuing an integrated dual degree in Materials at the Indian Institute of Technology, Kharagpur. Nikhil is an AI/ML enthusiast who is always researching applications in fields like biomaterials and biomedical science. With a strong background in Material Science, he is exploring new advancements and creating opportunities to contribute.

🚀 LLMWare Launches SLIMs: Small Specialized Function-Calling Models for Multi-Step Automation [Check out all the models]



Source link

Tags: advancedartificialCornellFrameworkHiQAintelligenceIntroducedMDQAMultiDocumentQuestionAnsweringResearchersUniversity
Previous Post

Video Highlights: How to Integrate Generative AI Into Your Business — with Piotr Grudzień

Next Post

Enhancing Underwater Image Segmentation with Deep Learning: A Novel Approach to Dataset Expansion and Preprocessing Techniques

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Enhancing Underwater Image Segmentation with Deep Learning: A Novel Approach to Dataset Expansion and Preprocessing Techniques

Enhancing Underwater Image Segmentation with Deep Learning: A Novel Approach to Dataset Expansion and Preprocessing Techniques

Keeping You Engaged: The Role of AI Integration in Social Media Addiction

Keeping You Engaged: The Role of AI Integration in Social Media Addiction

Shark Tank India Season 3: UPSC-qualified entrepreneur secures game-changing deal

Shark Tank India Season 3: UPSC-qualified entrepreneur secures game-changing deal

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In