Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

NVIDIA Researchers Introduce a GPU Accelerated Weighted Finite State Transducer (WFST) Beam Search Decoder Compatible with Current CTC Models

November 19, 2023
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


In recent times, with Artificial Intelligence becoming extremely popular, the field of Automated Speech Recognition (ASR) has seen tremendous progress. It has changed the face of voice-activated technologies and human-computer interaction. With ASR, machines can translate spoken language into text, which is essential for a variety of applications, including virtual assistants and transcription services. Researchers have been putting in efforts to find underlying algorithms as there is a need for more precise and effective ASR systems.

In recent research by NVIDIA, a team of researchers has studied the drawbacks of Connectionist Temporal Classification (CTC) models. In ASR pipelines, CTC models have become a leading contender for attaining great accuracy. These models are especially good at handling the subtleties of spoken language because they are very good at interpreting temporal sequences. Though accurate, the conventional CPU-based beam search decoding method has limited the performance of CTC models.

The beam search decoding process is an essential stage in accurately transcribing spoken words. The traditional method, which is the greedy search method, uses the acoustic model to determine which output token is most likely to be selected at each time step. When it comes to handling contextual biases and outside data, there are a number of challenges that accompany this approach.

To overcome all these challenges, the team has proposed the GPU-accelerated Weighted Finite State Transducer (WFST) beam search decoder as a solution. This approach has been introduced with the aim of integrating it smoothly with current CTC models. With this GPU-accelerated decoder, the ASR pipeline’s performance can be improved, along with throughput, latency, and support for features like on-the-fly composition for utterance-specific word boosting. The suggested GPU-accelerated decoder is especially well-suited for streaming inference because of its improved pipeline throughput and lower latency.

The team has evaluated this approach by testing the decoder in both offline and online environments. When compared to the state-of-the-art CPU decoder, the GPU-accelerated decoder showed up to seven times higher throughput in the offline scenario. The GPU-accelerated decoder achieved over eight times lower latency in the online streaming scenario while maintaining the same or even higher word error rates. These findings show that employing the suggested GPU-accelerated WFST beam search decoder with CTC models significantly improves efficiency and accuracy.

In conclusion, this approach can definitely work excellently in overcoming CPU-based beam search decoding’s performance constraints in CTC models. The suggested GPU-accelerated decoder is the quickest beam search decoder for CTC models in both offline and online contexts since it enhances throughput, lowers latency, and supports advanced features. To help with the decoder’s integration with Python-based machine learning frameworks, the team has made pre-built DLPack-based Python bindings available on GitHub. This work adds to the suggested solution’s usability and accessibility for Python developers with ML frameworks. The code repository can be accessed at https://github.com/nvidia-riva/riva-asrlib-decoder with a CUDA WFST decoder described as a C++ and Python library.

Check out the Paper and Github. All credit for this research goes to the researchers of this project. Also, don’t forget to join our 33k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more.

If you like our work, you will love our newsletter..

Tanya Malhotra is a final year undergrad from the University of Petroleum & Energy Studies, Dehradun, pursuing BTech in Computer Science Engineering with a specialization in Artificial Intelligence and Machine Learning.She is a Data Science enthusiast with good analytical and critical thinking, along with an ardent interest in acquiring new skills, leading groups, and managing work in an organized manner.

🔥 Join The AI Startup Newsletter To Learn About Latest AI Startups



Source link

Tags: AcceleratedBeamCompatibleCTCcurrentDecoderFiniteGPUIntroducemodelsNVIDIAResearchersSearchStateTransducerWeightedWFST
Previous Post

New AI technology ChatGPT Raising Questions About Human Creativity

Next Post

Digital Marketing Future In India | New Trends In Digital Marketing

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Digital Marketing Future In India | New Trends In Digital Marketing

Digital Marketing Future In India | New Trends In Digital Marketing

dYdX founder claims targeted attack led to $9M insurance claim By Cointelegraph

dYdX founder claims targeted attack led to $9M insurance claim By Cointelegraph

IRS targets top earners with AI and machine learning

IRS targets top earners with AI and machine learning

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In