Thursday, May 8, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Meta AI Introduces Multi-Line AI-Assisted Code Authoring

February 20, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


CodeCompose, an AI-powered code authoring tool utilized by tens of thousands of developers at Meta, has undergone scaling from providing single-line to multiline suggestions. This transition involved addressing unique challenges to enhance usability. Initially, multi-line suggestions were found to disrupt workflow by constantly shifting around existing code, potentially decreasing productivity and satisfaction. Additionally, generating multi-line suggestions took considerably longer, prompting investments to mitigate perceived latency.

Through model-hosting optimizations, the latency for multi-line suggestions was improved by 2.5 times. Subsequent experiments involving tens of thousands of engineers demonstrated that multi-line suggestions accounted for a significant portion of accepted characters and nearly doubled the percentage of keystrokes saved compared to single-line suggestions. Despite this, less than 1% of engineers at Meta opted out of multi-line suggestions after its rollout.

CodeCompose provides inline suggestions as a software engineer types code, but it was originally only designed to predict tokens that would complete the current line. Such single-line suggestions should be quick, highly accurate, and help with the immediate context.

CodeCompose’s multi-line algorithm is designed to trigger automatically as the user types, while also being selective in choosing trigger points and limiting suggestions to the user’s current scope. Although generating accurate multi-line suggestions is more challenging, the scope-based algorithm allows for the display of suggestions that align with the user’s current thought process, aiding their train of thought without introducing unnecessary distractions.


System architecture of CodeCompose: Client editor that surface the suggestions, a language server to mediate requests with CodeCompose model service host. In the request “multi-line” flag is passed to the model service.

The authors addressed the following challenges in this paper:

Challenge 1: The Jarring Effect: The team devised a scope-based algorithm to address this challenge. The algorithm triggers multi-line suggestions exclusively when the cursor is positioned at the end of a scope. Suggestions remain visible until the end of the current block, and upon acceptance, the cursor automatically moves to the end of the suggested block.


Single-line “jarring” effect example: The user cursor positioned between “def” keyword and the “quicksort” function, inline suggestion appears and moves the existing user code to the right.


Example showing multi-line “jarring” effect: the user cursor was between a function name and the next line containing the statement “test1 = 1”. When the suggestion occurs, the existing line is pushed down, disrupting the developer’s flow and forcing them to review the suggested “quicksort” function while also determining the correct location of their existing code.

Challenge 2: Responsive UX: Recognizing that multi-line suggestions require more time to generate, efforts were made to minimize perceived user latency and enhance adoption compared to single-line suggestions. This involved (i) introducing a UI indicator to inform users when a multi-line suggestion is being generated and (ii) implementing optimizations in the model hosting service, such as Flash Attention and persistent K-V cache.

Challenge 3: Production Release Effectiveness: Throughout the rollout of multi-line suggestions, the team closely monitored various metrics including acceptance rate, display rate, latency, and throughput. This evaluation helped assess the overall effectiveness of multi-line suggestions compared to single-line suggestions.

Similar findings were observed, noted that although developers perceived an acceleration in coding, they often needed to allocate more time to review the generated code. Conversely, other studies indicated that generated suggestions facilitated the discovery of new APIs.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and Google News. Join our 37k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter.

Don’t Forget to join our Telegram Channel

Janhavi Lande, is an Engineering Physics graduate from IIT Guwahati, class of 2023. She is an upcoming data scientist and has been working in the world of ml/ai research for the past two years. She is most fascinated by this ever changing world and its constant demand of humans to keep up with it. In her pastime she enjoys traveling, reading and writing poems.

🚀 LLMWare Launches SLIMs: Small Specialized Function-Calling Models for Multi-Step Automation [Check out all the models]



Source link

Tags: AIAssistedauthoringCodeIntroducesMetaMultiLine
Previous Post

Climate change predictions: Anticipating and adapting to a warming world

Next Post

Optimize After-Tax Income With Tax Efficient REITs

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Optimize After-Tax Income With Tax Efficient REITs

Optimize After-Tax Income With Tax Efficient REITs

Flutter Apprentice | Kodeco

Flutter Apprentice | Kodeco

40+ CSS Glassmorphism Effects

40+ CSS Glassmorphism Effects

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In