Friday, May 16, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Meet Q-Align: The All-in-One Visual Scorer Based on Large Multi-Modality Models

January 7, 2024
in AI Technology
Reading Time: 3 mins read
0 0
A A
0
Share on FacebookShare on Twitter


With the vast amount of visual content available online, it is essential to assess images and videos accurately. The challenge is to develop robust machine assessment tools that can determine various types of visual content and align closely with human opinions. This need spans different domains, such as image and video quality assessment (IQA and VQA) and image aesthetic assessment (IAA), each requiring unique approaches to effectively rate and understand visual content.

Traditional methods, ranging from handcrafted algorithms to advanced deep-learning models, have focused on assessing visual content by regressing from mean opinion scores (MOS). However, these methods must be revised, particularly when dealing with new content types and diverse scoring scenarios. Their inadequacy largely stems from poor out-of-distribution generalization abilities, an issue that becomes increasingly prominent with the complexity and variety of modern visual content.

A breakthrough in this field is the introduction of Q-ALIGN, a novel methodology developed by researchers from Nanyang Technological University, Shanghai Jiao Tong University, and SenseTime Research. Q-ALIGN represents a departure from conventional approaches and educates Large Multi-Modality Models (LMMs) to rate visual content using text-defined rating levels, not direct numerical scores. This approach is more akin to how human raters evaluate and judge in subjective studies, marking a significant shift in machine-based visual assessment.

The methodology of Q-ALIGN is intricate and carefully designed. It converts existing score labels into discrete text-defined rating levels during the training phase. This process is analogous to how human raters learn and judge in subjective studies. They typically work with predefined levels like ‘excellent,’ ‘good,’ ‘fair,’ etc., rather than specific numerical scores. The innovation here is teaching LMMs to understand and use these text-defined levels for visual rating, which aligns more with human cognitive processes.

https://arxiv.org/abs/2312.17090

In the inference phase, Q-ALIGN emulates the strategy of collecting MOS from human ratings. It extracts the log probabilities on different rating levels and employs softmax pooling to obtain the close-set probabilities of each level. The final score is then derived from a weighted average of these probabilities. This process mirrors how human ratings are converted into MOS in subjective visual assessments.

The performance and results of Q-ALIGN are noteworthy. It has achieved state-of-the-art performance in IQA, IAA, and VQA tasks. Compared to existing methods that struggle with novel content types and diverse scoring scenarios, Q-ALIGN’s discrete-level-based syllabus has shown superior performance, especially in out-of-distribution settings. These results indicate its effectiveness in accurately assessing a wide range of visual content.

Q-ALIGN’s ability to generalize effectively to new types of content underlines its potential for broad application across various fields. It represents a paradigm shift in the domain of visual content assessment. Adopting a methodology that aligns more closely with human judgment offers a robust, accurate, and more intuitive tool for scoring diverse types of visual content. The work addresses the limitations of existing methods and opens up new possibilities for future advancements in the field.

Check out the Paper and Github. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our 35k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Source link

Tags: AllinOneBasedLargeMeetmodelsMultiModalityQAlignScorerVisual
Previous Post

DID CHINA LIE?! Biggest Crypto ‘BOMBSHELL’ Happening TODAY…

Next Post

Salesforce Research Proposes MoonShot: A New Video Generation AI Model that Conditions Simultaneously on Multimodal Inputs of Image and Text

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Salesforce Research Proposes MoonShot: A New Video Generation AI Model that Conditions Simultaneously on Multimodal Inputs of Image and Text

Salesforce Research Proposes MoonShot: A New Video Generation AI Model that Conditions Simultaneously on Multimodal Inputs of Image and Text

Meet GPT4Free: An Artificial Intelligence-Based Software Package that Reverse-Engineers APIs to Grant Anyone Free Access to Popular AI Models like OpenAI’s GPT-4 

Meet GPT4Free: An Artificial Intelligence-Based Software Package that Reverse-Engineers APIs to Grant Anyone Free Access to Popular AI Models like OpenAI’s GPT-4 

Delhi govt withdraws order on extended winter break for schools; check details here

Delhi govt withdraws order on extended winter break for schools; check details here

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
How To Build A Quiz App With JavaScript for Beginners

How To Build A Quiz App With JavaScript for Beginners

February 22, 2024
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In