Thursday, May 8, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Meet PowerInfer: A Fast Large Language Model (LLM) on a Single Consumer-Grade GPU that Speeds up Machine Learning Model Inference By 11 Times

December 23, 2023
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Generative Large Language Models (LLMs) are well known for their remarkable performance in a variety of tasks, including complex Natural Language Processing (NLP), creative writing, question answering, and code generation. In recent times, LLMs have been run on approachable local systems, including home PCs with consumer-grade GPUs for improved data privacy, customizable models, and lower inference costs. Local installations prioritize low latency over high throughput; however, LLMs are difficult to implement on consumer-grade GPUs because of high memory requirements.

These models, which are frequently autoregressive transformers, produce text token by token and, for each inference, need access to the complete model with hundreds of billions of parameters. This limitation is noticeable in local deployments because there is less space for parallel processing when handling individual requests. Two current strategies to deal with these memory problems are offloading and model compression.

In a recent study, a team of researchers presented PowerInfer, an effective LLM inference system designed for local deployments using a single consumer-grade GPU. PowerInfer reduces the requirement for expensive PCIe (Peripheral Component Interconnect Express) data transfers by preselecting and preloading hot-activated neurons onto the GPU offline and using online predictors to identify active neurons during runtime. 

The core idea behind PowerInfer’s design is to make use of the high locality that comes with LLM inference, which is typified by a power-law distribution in neuron activation. This distribution shows that most cold neurons change based on certain inputs, whereas a tiny fraction of hot neurons consistently activate across different inputs.

The team has shared that PowerInfer is a GPU-CPU hybrid inference engine that makes use of this understanding. It preloads cold-activated neurons onto the CPU for computation and hot-activated neurons onto the GPU for instant access. By distributing the workload strategically, the GPU’s memory requirements are greatly reduced, and there are fewer data transfers between the CPU and GPU. 

PowerInfer integrates neuron-aware sparse operators and adaptive predictors to optimize performance further. Neuron-aware sparse operators directly interact with individual neurons, eliminating the need to operate on entire matrices, while adaptive predictors help identify and forecast active neurons during runtime. These optimizations enhance computational sparsity and effective neuron activation.

The team has evaluated PowerInfer’s performance, which has shown an average token creation rate of 13.20 per second and a peak performance of 29.08 tokens per second. These outcomes have been achieved using a single NVIDIA RTX 4090 GPU and a variety of LLMs, including the OPT-175B model. This performance only falls 18% short of the best-in-class server-grade A100 GPU, demonstrating PowerInfer’s effectiveness on mainstream hardware.

Upon evaluation, PowerInfer has also shown that it has the capability to run up to 11.69 times faster than the current llama.cpp system while retaining model fidelity. In conclusion, PowerInfer offers a significant boost in LLM inference speed, indicating its potential as a solution for advanced language model execution on desktop PCs with constrained GPU capabilities.

Check out the Paper and Github. All credit for this research goes to the researchers of this project. Also, don’t forget to join our 34k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more.

If you like our work, you will love our newsletter..

\"\"

Tanya Malhotra is a final year undergrad from the University of Petroleum & Energy Studies, Dehradun, pursuing BTech in Computer Science Engineering with a specialization in Artificial Intelligence and Machine Learning.She is a Data Science enthusiast with good analytical and critical thinking, along with an ardent interest in acquiring new skills, leading groups, and managing work in an organized manner.

🚀 Boost your LinkedIn presence with Taplio: AI-driven content creation, easy scheduling, in-depth analytics, and networking with top creators – Try it free now!.



Source link

Tags: ConsumerGradeFastGPUinferencelanguageLargeLearningLLMMachineMeetmodelPowerInferSingleSpeedsTimes
Previous Post

Crypto News Digest by U.Today By U.Today

Next Post

EWT, DAPP and BKCH among weekly ETF movers (NYSEARCA:EWT)

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
EWT, DAPP and BKCH among weekly ETF movers (NYSEARCA:EWT)

EWT, DAPP and BKCH among weekly ETF movers (NYSEARCA:EWT)

BEST Crypto Bridge? Wanchain – Blockchain Interoperability Leader 🏆

BEST Crypto Bridge? Wanchain - Blockchain Interoperability Leader 🏆

Elon Musk says at SpaceX ‘we never think about the quarter’—and he’s in no rush to spin off Starlink given the ‘tremendous distraction’ of being public like Tesla

Elon Musk says at SpaceX ‘we never think about the quarter’—and he’s in no rush to spin off Starlink given the ‘tremendous distraction’ of being public like Tesla

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In