Friday, May 23, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Meet MosaicBERT: A BERT-Style Encoder Architecture and Training Recipe that is Empirically Optimized for Fast Pretraining

January 10, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


BERT is a language model which was released by Google in 2018. It is based on the transformer architecture and is known for its significant improvement over previous state-of-the-art models. As such, it has been the powerhouse of numerous natural language processing (NLP) applications since its inception, and even in the age of large language models (LLMs), BERT-style encoder models are used in tasks like vector embeddings and retrieval augmented generation (RAG). However, in the past half a decade, many significant advancements have been made with other types of architectures and training configurations that have yet to be incorporated into BERT.

In this research paper, the authors have shown that speed optimizations can be incorporated into the BERT architecture and training recipe. For this, they have introduced an optimized framework called MosaicBERT that improves the pretraining speed and accuracy of the classic BERT architecture, which has historically been computationally expensive to train.

To build MosaicBERT, the researchers used different architectural choices such as FlashAttention, ALiBi, training with dynamic unpadding, low-precision LayerNorm, and Gated Linear Units.

The flashAttention layer reduces the number of read/write operations between the GPU’s long-term and short-term memory.

ALiBi encodes position information through the attention operation, eliminating the position embeddings and acting as an indirect speedup method.

The researchers modified the LayerNorm modules to run in bfloat16 precision instead of float32, which reduces the amount of data that needs to be loaded from memory from 4 bytes per element to 2 bytes.

Lastly, the Gated Linear Units improves the Pareto performance across all timescales.

The researchers pretrained BERT-Base and MosaicBERT-Base for 70,000 steps of batch size 4096 and then finetuned them on the GLUE benchmark suite. BERT-Base reached an average GLUE score of 83.2% in 11.5 hours, whereas MosaicBERT achieved the same accuracy in around 4.6 hours on the same hardware, highlighting the significant speedup. MosaicBERT also outperforms the BERT model in four out of eight GLUE tasks across the training duration.

The large variant of MosaicBERT also had a significant speedup over the BERT variant, achieving an average GLUE score of 83.2 in 15.85 hours compared to 23.35 hours taken by BERT-Large. Both the variants of MosaicBERT are Pareto Optimal relative to the corresponding BERT models. The results also show that the performance of BERT-Large surpasses the base model only after extensive training.

In conclusion, the authors of this research paper have improved the pretraining speed and accuracy of the BERT model using a combination of architectural choices such as FlashAttention, ALiBi, low-precision LayerNorm, and Gated Linear Units. Both the model variants had a significant speedup compared to their BERT counterparts by achieving the same GLUE score in less time on the same hardware. The authors hope their work will help researchers pre-train BERT models faster and cheaper, ultimately enabling them to build better models.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our 35k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

\"\"

Asif Razzaq is the CEO of Marktechpost Media Inc.. As a visionary entrepreneur and engineer, Asif is committed to harnessing the potential of Artificial Intelligence for social good. His most recent endeavor is the launch of an Artificial Intelligence Media Platform, Marktechpost, which stands out for its in-depth coverage of machine learning and deep learning news that is both technically sound and easily understandable by a wide audience. The platform boasts of over 2 million monthly views, illustrating its popularity among audiences.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



Source link

Tags: ArchitectureBERTStyleEmpiricallyEncoderFastMeetMosaicBERTOptimizedPreTrainingrecipetraining
Previous Post

Apple stock faces three downgrades, but not everyone is down on the company

Next Post

Breaking down the advantages and disadvantages of artificial intelligence

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Breaking down the advantages and disadvantages of artificial intelligence

Breaking down the advantages and disadvantages of artificial intelligence

AI Drives the Intersection of Industrial Hygiene and Cybersecurity

AI Drives the Intersection of Industrial Hygiene and Cybersecurity

7 Quick Changes For A More Enjoyable Lifestyle

7 Quick Changes For A More Enjoyable Lifestyle

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
Accenture creates a regulatory document authoring solution using AWS generative AI services

Accenture creates a regulatory document authoring solution using AWS generative AI services

February 6, 2024
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In