Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Meet Hawkeye: A Unified Deep Learning-based Fine-Grained Image Recognition Toolbox Built on PyTorch

February 14, 2024
in AI Technology
Reading Time: 3 mins read
0 0
A A
0
Share on FacebookShare on Twitter


In recent years, notable advancements in the design and training of deep learning models have led to significant improvements in image recognition performance, particularly on large-scale datasets. Fine-Grained Image Recognition (FGIR) represents a specialized domain focusing on the detailed recognition of subcategories within broader semantic categories. Despite the progress facilitated by deep learning, FGIR remains a formidable challenge, with wide-ranging applications in smart cities, public safety, ecological protection, and agricultural production.

The primary hurdle in FGIR revolves around discerning subtle visual disparities crucial for distinguishing objects with highly similar overall appearances but varying fine-grained features. Existing FGIR methods can generally be categorized into three paradigms: recognition by localization-classification subnetworks, recognition by end-to-end feature encoding, and recognition with external information.

While some methods from these paradigms have been made available as open-source, a unified open-needs-to-be library currently lacks. This absence poses a significant obstacle for new researchers entering the field, as different methods often rely on disparate deep-learning frameworks and architectural designs, necessitating a steep learning curve for each. Moreover, the absence of a unified library often compels researchers to develop their code from scratch, leading to redundant efforts and less reproducible results due to variations in frameworks and setups.

To tackle this, researchers at the Nanjing University of Science and Technology introduce Hawkeye, a PyTorch-based library for Fine-Grained Image Recognition (FGIR) built upon a modular architecture, prioritizing high-quality code and human-readable configuration. With its deep learning capabilities, Hawkeye offers a comprehensive solution tailored specifically for FGIR tasks.

Hawkeye encompasses 16 representative methods spanning six paradigms in FGIR, providing researchers with a holistic understanding of current state-of-the-art techniques. Its modular design facilitates easy integration of custom methods or enhancements, enabling fair comparisons with existing approaches. The FGIR training pipeline in Hawkeye is structured into multiple modules integrated within a unified pipeline. Users can override specific modules, ensuring flexibility and customization while minimizing code modifications.

Emphasizing code readability, Hawkeye simplifies each module within the pipeline to enhance comprehensibility. This approach aids beginners in quickly grasping the training process and the functions of each component.

Hawkeye provides YAML configuration files for each method, allowing users to conveniently modify hyperparameters related to the dataset, model, optimizer, etc. This streamlined approach enables users to efficiently tailor experiments to their specific requirements.

Check out the Paper and Github. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and Google News. Join our 36k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our Telegram Channel

\"\"

Arshad is an intern at MarktechPost. He is currently pursuing his Int. MSc Physics from the Indian Institute of Technology Kharagpur. Understanding things to the fundamental level leads to new discoveries which lead to advancement in technology. He is passionate about understanding the nature fundamentally with the help of tools like mathematical models, ML models and AI.

🚀 LLMWare Launches SLIMs: Small Specialized Function-Calling Models for Multi-Step Automation [Check out all the models]



Source link

Tags: BuiltDeepFinegrainedHawkEyeImageLearningBasedMeetPyTorchRecognitionToolboxUnified
Previous Post

This AI Paper Proposes LongAlign: A Recipe of the Instruction Data, Training, and Evaluation for Long Context Alignment

Next Post

Learning the importance of training data under concept drift – Google Research Blog

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Learning the importance of training data under concept drift – Google Research Blog

Learning the importance of training data under concept drift – Google Research Blog

Building a 3D Card Flip Animation with CSS Houdini — SitePoint

Building a 3D Card Flip Animation with CSS Houdini — SitePoint

Boston Pizza Royalties Income Fund (BPZZF) Q4 2023 Earnings Call Transcript

Boston Pizza Royalties Income Fund (BPZZF) Q4 2023 Earnings Call Transcript

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In