Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Learn How to Generate 3D Avatars from 2D Image Collections with this Novel AI Technique

November 24, 2023
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Generative models, such as Generative Adversarial Networks (GANs), have the capacity to generate lifelike images of objects and dressed individuals after being trained on an extensive image collection. Although the resulting output is a 2D image, numerous applications necessitate diverse and high-quality virtual 3D avatars. These avatars should allow pose and camera viewpoint control while ensuring 3D consistency. To address the demand for 3D avatars, the research community explores generative models capable of automatically generating 3D shapes of humans and clothing based on input parameters like body pose and shape. Despite considerable advancements, most existing methods overlook texture and rely on precise and clean 3D scans of humans for training. Acquiring such scans is expensive, limiting their availability and diversity.

Developing a method for learning the generation of 3D human shapes and textures from unstructured image data presents a challenging and under-constrained problem. Each training instance exhibits unique shapes and appearances, observed only once from specific viewpoints and poses. While recent progress in 3D-aware GANs has shown impressive results for rigid objects, these methods face difficulties in generating realistic humans due to the complexity of human articulation. Although some recent work demonstrates the feasibility of learning articulated humans, existing approaches struggle with limited quality, resolution, and challenges in modeling loose clothing.

The paper reported in this article introduces a novel method for 3D human generation from 2D image collections, achieving state-of-the-art image and geometry quality while effectively modeling loose clothing.

The overview of the proposed method is illustrated below.

\"\"

This method adopts a monolithic design capable of modeling both the human body and loose clothing, departing from the approach of representing humans with separate body parts. Multiple discriminators are incorporated to enhance geometric detail and focus on perceptually important regions.

A novel generator design is proposed to address the goal of high image quality and flexible handling of loose clothing, modeling 3D humans holistically in a canonical space. The articulation module, Fast-SNARF, is responsible for the movement and positioning of body parts and adapted to the generative setting. Additionally, the model adopts empty-space skipping, optimizing and accelerating the rendering of areas with no significant content to improve overall efficiency.

The modular 2D discriminators are guided by normal information, meaning they consider the directionality of surfaces in the 3D space. This guidance helps the model focus on regions that are perceptually important for human observers, contributing to a more accurate and visually pleasing outcome. Furthermore, the discriminators prioritize geometric details, enhancing the overall quality of the generated images. This improvement likely contributes to a more realistic and visually appealing representation of the 3D human models.

\"\"

The experimental results reported above demonstrate a significant improvement of the proposed method over previous 3D- and articulation-aware methods in terms of geometry and texture quality, validated quantitatively, qualitatively, and through perceptual studies.

In summary, this contribution includes a generative model of articulated 3D humans with state-of-the-art appearance and geometry, an efficient generator for loose clothing, and specialized discriminators enhancing visual and geometric fidelity. The authors plan to release the code and models for further exploration.

Check out the Paper and Project Page. All credit for this research goes to the researchers of this project. Also, don’t forget to join our 33k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more.

If you like our work, you will love our newsletter..

\"\"

Daniele Lorenzi received his M.Sc. in ICT for Internet and Multimedia Engineering in 2021



Source link

Tags: avatarsCollectionsgenerateImageLearntechnique..
Previous Post

Best Black Friday 2023 Smart Home Deals

Next Post

Rep. Dean Phillips, Democrat challenging Biden, won’t run for reelection

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Rep. Dean Phillips, Democrat challenging Biden, won’t run for reelection

Rep. Dean Phillips, Democrat challenging Biden, won't run for reelection

CleanSpark: Buy Before The April 2024 Bitcoin Halving (NASDAQ:CLSK)

CleanSpark: Buy Before The April 2024 Bitcoin Halving (NASDAQ:CLSK)

The Weekly Roundup – Top AI & Data Science News The Week | 12th Feb 2022

The Weekly Roundup - Top AI & Data Science News The Week | 12th Feb 2022

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In