Thursday, May 8, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

How LLMs think | A Mathematical Approach

June 7, 2024
in AI Technology
Reading Time: 11 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Research paper in pills: “Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet”

Towards Data Science

Image Generated by DALL-E

Have you ever wondered how an AI model “thinks”? Imagine peering inside the mind of a machine and watching the gears turn. This is exactly what a groundbreaking paper from Anthropic explores. Titled “Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet”, the research delves into understanding and interpreting the thought processes of AI.

The researchers managed to extract features from the Claude 3 Sonnet model that show what it was thinking about famous people, cities, and even security vulnerabilities in software. It’s like getting a glimpse into the AI’s mind, revealing the concepts it understands and uses to make decisions.

Research Paper Overview

In the paper, the Anthropic team, including Adly Templeton, Tom Conerly, Jonathan Marcus, and others, set out to make AI models more transparent. They focused on Claude 3 Sonnet, a medium-sized AI model, and aimed to scale monosemanticity — essentially making sure that each feature in the model has a clear, single meaning.

But why is scaling monosemanticity so important? And what exactly is monosemanticity? We’ll dive into that soon.

Importance of the Study

Understanding and interpreting features in AI models is crucial. It helps us see how these models make decisions, making them more reliable and easier to improve. When we can interpret these features, debugging, refining, and optimizing AI models becomes easier.

This research also has significant implications for AI safety. By identifying features linked to harmful behaviors, such as bias, deception, or dangerous content, we can develop ways to reduce these risks. This is especially important as AI systems become more integrated into everyday life, where ethical considerations and safety are essential.

One of the key contributions of this research is showing us how to understand what a large language model (LLM) is “thinking.” By extracting and interpreting features, we can get an insight into the internal workings of these complex models. This helps us see why they make certain decisions, providing a way to peek into their “thought processes.”

Background

Let’s review some of the odd terms mentioned earlier:

MonosemanticityMonosemanticity is like having a single, specific key for each lock in a huge building. Imagine this building represents the AI model; each lock is a feature or concept the model understands. With monosemanticity, every key (feature) fits only one lock (concept) perfectly. This means whenever a particular key is used, it always opens the same lock. This consistency helps us understand exactly what the model is thinking about when it makes decisions because we know which key opened which lock.

Sparse AutoencodersA sparse autoencoder is like a highly efficient detective. Imagine you have a big, cluttered room (the data) with many items scattered around. The detective’s job is to find the few key items (important features) that tell the whole story of what happened in the room. The “sparse” part means this detective tries to solve the mystery using as few clues as possible, focusing only on the most essential pieces of evidence. In this research, sparse autoencoders act like this detective, helping to identify and extract clear, understandable features from the AI model, making it easier to see what’s going on inside.

Here are some useful lecture notes by Andrew Ng on Autoencoders, to learn more about them.

Previous Work

Previous research laid the foundation by exploring how to extract interpretable features from smaller AI models using sparse autoencoders. These studies showed that sparse autoencoders could effectively identify meaningful features in simpler models. However, there were significant concerns about whether this method could scale up to larger, more complex models like Claude 3 Sonnet.

The earlier studies focused on proving that sparse autoencoders could identify and represent key features in smaller models. They succeeded in showing that the extracted features were both meaningful and interpretable. However, the main limitation was that these techniques had only been tested on simpler models. Scaling up was essential because larger models like Claude 3 Sonnet handle more complex data and tasks, making it harder to maintain the same level of clarity and usefulness in the extracted features.

This research builds on those foundations by aiming to scale these methods to more advanced AI systems. The researchers applied and adapted sparse autoencoders to handle the higher complexity and dimensionality of larger models. By addressing the challenges of scaling, this study seeks to ensure that even in more complex models, the extracted features remain clear and useful, thus advancing our understanding and interpretation of AI decision-making processes.

Scaling Sparse Autoencoders

Scaling sparse autoencoders to work with a larger model like Claude 3 Sonnet is like upgrading from a small, local library to managing a vast national archive. The techniques that worked well for the smaller collection need to be adjusted to handle the sheer size and complexity of the bigger dataset.

Sparse autoencoders are designed to identify and represent key features in data while keeping the number of active features low, much like a librarian who knows exactly which few books out of thousands will answer your question.

Image generated by DALL-E

Two key hypotheses guide this scaling:

Linear Representation HypothesisImagine a giant map of the night sky, where each star represents a concept the AI understands. This hypothesis suggests that each concept (or star) aligns in a specific direction in the model’s activation space. Essentially, it’s like saying that if you draw a line through space pointing directly to a specific star, you can identify that star uniquely by its direction.

Superposition HypothesisBuilding on the night sky analogy, this hypothesis is like saying the AI can use these directions to map more stars than there are directions by using almost perpendicular lines. This allows the AI to efficiently pack information by finding unique ways to combine these directions, much like fitting more stars into the sky by carefully mapping them in different layers.

By applying these hypotheses, researchers could effectively scale sparse autoencoders to work with larger models like Claude 3 Sonnet, enabling them to capture and represent both simple and complex features in the data.

Training the Model

Imagine trying to train a group of detectives to sift through a vast library to find key pieces of evidence. This is similar to what researchers did with sparse autoencoders (SAEs) in their work with Claude 3 Sonnet, a complex AI model. They had to adapt the training techniques for these detectives to handle the larger, more complex data set represented by the Claude 3 Sonnet model.

The researchers decided to apply the SAEs to the residual stream activations in the middle layer of the model. Think of the middle layer as a crucial checkpoint in a detective’s investigation, where a lot of interesting, abstract clues are found. They chose this point because:

The team trained three versions of the SAEs, with different capacities to handle features: 1M features, 4M features, and 34M features. For each SAE, the goal was to keep the number of active features low while maintaining accuracy:

They found that the best learning rates also followed a power law trend, helping them choose appropriate rates for larger runs.

Mathematical Foundation

The core mathematical principles behind the sparse autoencoder model are essential for understanding how it decomposes activations into interpretable features.

EncoderThe encoder transforms the input activations into a higher-dimensional space using a learned linear transformation followed by a ReLU nonlinearity. This is represented as:

Here, W^enc and b^enc are the encoder weights and biases, and fi​(x) represents the activation of feature i.

DecoderThe decoder attempts to reconstruct the original activations from the features using another linear transformation:

LossThe model is trained to minimize a combination of reconstruction error and sparsity penalty:

This loss function ensures that the reconstruction is accurate (minimizing the L2 norm of the error) while keeping the number of active features low (enforced by the L1 regularization term with a coefficient λ).

Interpretable Features

The research revealed a wide variety of interpretable features within the Claude 3 Sonnet model, encompassing both abstract and concrete concepts. These features provide insights into the model’s internal processes and decision-making patterns.

Source link

Tags: ApproachLLMsMathematical
Previous Post

Americans are getting pickier, but they are still spending on hot items By Reuters

Next Post

US Institutional Trading Boost: Robinhood to Buy Bitstamp

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
US Institutional Trading Boost: Robinhood to Buy Bitstamp

US Institutional Trading Boost: Robinhood to Buy Bitstamp

This AI-powered “black-box” could make surgery safer

This AI-powered “black-box” could make surgery safer

NVIDIA Enhances Low-Resolution SDR Video with RTX Video SDK Release

NVIDIA Enhances Low-Resolution SDR Video with RTX Video SDK Release

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In