Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

How does Bing Chat Surpass ChatGPT in Providing Up-to-Date Real-Time Knowledge? Meet Retrieval Augmented Generation (RAG)

November 29, 2023
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


With the development of Large Language Models (LLMs) in recent times, these models have brought about a paradigm change in the fields of Artificial Intelligence and Machine Learning. These models have gathered significant attention from the masses and the AI community, resulting in incredible advancements in Natural Language Processing, generation, and understanding. The best example of LLM, the well-known ChatGPT based on OpenAI’s GPT architecture, has transformed the way humans interact with AI-powered technologies.

Though LLMs have shown great capabilities in tasks including text generation, question answering, text summarization, and language translations, they still have their own set of drawbacks. These models can sometimes produce information in the form of output that can be inaccurate or outdated in nature. Even the lack of proper source attribution can make it difficult to validate the reliability of the output generated by LLMs.

What is Retrieval Augmented Generation (RAG)?

An approach called Retrieval Augmented Generation (RAG) addresses the above limitations. RAG is an Artificial Intelligence-based framework that gathers facts from an external knowledge base to let Large Language Models have access to accurate and up-to-date information.

Through the integration of external knowledge retrieval, RAG has been able to transform LLMs. In addition to precision, RAG gives consumers transparency by revealing details about the generation process of LLMs. The limitations of conventional LLMs are addressed by RAG, which guarantees a more dependable, context-aware, and knowledgeable AI-driven communication environment by smoothly combining external retrieval and generative methods.

Advantages of RAG

Enhanced Response Quality – Retrieval Augmented Generation focuses on the problem of inconsistent LLM-generated responses, guaranteeing more precise and trustworthy data.

Getting Current Information – RAG integrates outside information into internal representation to guarantee that LLMs have access to current and trustworthy facts. It ensures that answers are grounded in up-to-date knowledge, improving the model’s accuracy and relevance.

Transparency – RAG implementation enables users to retrieve the sources of the model in LLM-based Q&A systems. By enabling users to verify the integrity of statements, the LLM fosters transparency and increases confidence in the data it provides.

Decreased Information Loss and Hallucination – RAG lessens the possibility that the model would leak confidential information or produce false and misleading results by basing LLMs on independent, verifiable facts. It reduces the possibility that LLMs will misinterpret information by depending on a more trustworthy external knowledge base.

Reduced Computational Expenses – RAG reduces the requirement for ongoing parameter adjustments and training in response to changing conditions. It lessens the financial and computational strain, increasing the cost-effectiveness of LLM-powered chatbots in business environments.

How does RAG work?

Retrieval-augmented generation, or RAG, makes use of all the information that is available, such as structured databases and unstructured materials like PDFs. This heterogeneous material is converted into a common format and assembled into a knowledge base, forming a repository that the Generative Artificial Intelligence system can access.

The crucial step is to translate the data in this knowledge base into numerical representations using an embedded language model. Then, a vector database with fast and effective search capabilities is used to store these numerical representations. As soon as the generative AI system prompts, this database makes it possible to retrieve the most pertinent contextual information quickly.

Components of RAG

RAG comprises two components, namely retrieval-based techniques and generative models. These two are expertly combined by RAG to function as a hybrid model. While generative models are excellent at creating language that is relevant to the context, retrieval components are good at retrieving information from outside sources like databases, publications, or web pages. The unique strength of RAG is how well it integrates these elements to create a symbiotic interaction.

RAG is also able to comprehend user inquiries profoundly and provide answers that go beyond simple accuracy. The model distinguishes itself as a potent instrument for complex and contextually rich language interpretation and creation by enriching responses with contextual depth in addition to providing accurate information.

Conclusion

In conclusion, RAG is an incredible technique in the world of Large Language Models and Artificial Intelligence. It holds great potential for improving information accuracy and user experiences by integrating itself into a variety of applications. RAG offers an efficient way to keep LLMs informed and productive to enable improved AI applications with more confidence and accuracy.

References:

https://learn.microsoft.com/en-us/azure/search/retrieval-augmented-generation-overview

https://stackoverflow.blog/2023/10/18/retrieval-augmented-generation-keeping-llms-relevant-and-current/

Retrieval augmented generation

\"\"

Tanya Malhotra is a final year undergrad from the University of Petroleum & Energy Studies, Dehradun, pursuing BTech in Computer Science Engineering with a specialization in Artificial Intelligence and Machine Learning.She is a Data Science enthusiast with good analytical and critical thinking, along with an ardent interest in acquiring new skills, leading groups, and managing work in an organized manner.

↗ Step by Step Tutorial on ‘How to Build LLM Apps that can See Hear Speak’



Source link

Tags: AugmentedBingChatchatgptGenerationKnowledgeMeetProvidingRAGrealtimeretrievalSurpassUptoDate
Previous Post

BELONG @ DataRobot: Two Years of Being Better Together

Next Post

Millions of new materials discovered with deep learning

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Millions of new materials discovered with deep learning

Millions of new materials discovered with deep learning

Top 5 Coding Languages To Get a Job

Top 5 Coding Languages To Get a Job

1. Introduction for 15.S12 Blockchain and Money, Fall 2018

1. Introduction for 15.S12 Blockchain and Money, Fall 2018

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In