Friday, May 23, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Hippocrates: An Open-Source Machine Learning Framework for Advancing Large Language Models in Healthcare

April 30, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Artificial intelligence (AI) is transforming healthcare, bringing sophisticated computational techniques to bear on challenges ranging from diagnostics to treatment planning. In this dynamic field, large language models (LLMs) are emerging as powerful tools capable of parsing and understanding complex medical data, thus promising to revolutionize patient care and research.

A key issue confronting the healthcare sector is the intricate nature of medical data and the rigorous demands of accuracy and efficiency in medical diagnostics. For AI applications, the challenge is not only to process vast amounts of data but also to deliver precise and applicable insights in real-time clinical environments.

Existing research in healthcare AI includes the Meditron 70B, which utilizes supervised fine-tuning on medical texts, and the MedAlpaca model, leveraging the LLaMA architecture for medical dialogues. BioGPT focuses on biomedical text generation, demonstrating the adaptability of transformers in specialized domains. The PMC-LLaMA model further enhances performance through domain-specific pre-training from large biomedical databases. The limitations of these tools stem from their restricted access to proprietary datasets and the complexity involved in training models that can handle the nuances of medical terminology and patient data effectively.

Researchers at Koç University, Hacettepe University, Yıldız Technical University, and Robert College introduced “Hippocrates,” an open-source framework tailored for healthcare applications of LLMs. Unlike prior models that rely on proprietary data, Hippocrates grants full access to its extensive resources, fostering greater innovation and collaboration in medical AI research. This framework stands out by integrating continual pre-training and reinforcement learning with feedback from human experts, enhancing the model’s practical utility in medical settings.

The Hippocrates framework employs a systematic methodology that begins with continual pre-training on a comprehensive corpus of medical texts. The models, including the Hippo family of 7B parameter models, are then fine-tuned using specialized datasets such as the MedQA and PMC-Patients databases. This process leverages instruction tuning and reinforcement learning techniques to align model outputs with expert medical insights. The robust evaluation employs the EleutherAI evaluation framework, ensuring that the models are tested across various medical benchmarks to validate their efficacy and reliability.

The Hippocrates framework has demonstrated remarkable efficacy, with the Hippo-7B models achieving a 5-shot accuracy of 59.9% on the MedQA dataset, surpassing the 58.5% accuracy of competing 70B parameter models. This significant improvement highlights the framework’s effectiveness. In addition, these models consistently outperform other established medical LLMs across multiple benchmarks, validating the robustness of the training and fine-tuning processes employed. These results affirm the Hippocrates framework’s capability to enhance the precision and reliability of AI applications in the medical domain.

In conclusion, the Hippocrates framework represents a significant advancement in applying LLMs to healthcare. Hippocrates facilitates substantial improvements in medical diagnostics by providing open access to comprehensive resources and employing a refined methodology of continual pre-training and fine-tuning with specialized medical datasets. The Hippo models’ successful implementation and superior performance, evidenced by their robust accuracy across various benchmarks, underscore the framework’s potential to enhance medical research and patient care through innovative AI-driven solutions.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter.

Don’t Forget to join our 40k+ ML SubReddit

Nikhil is an intern consultant at Marktechpost. He is pursuing an integrated dual degree in Materials at the Indian Institute of Technology, Kharagpur. Nikhil is an AI/ML enthusiast who is always researching applications in fields like biomaterials and biomedical science. With a strong background in Material Science, he is exploring new advancements and creating opportunities to contribute.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



Source link

Tags: AdvancingFrameworkHealthcareHippocrateslanguageLargeLearningMachinemodelsOpenSource
Previous Post

Managed Detection and Response (MDR) Enhances Cybersecurity

Next Post

Developers Guide to Blockchain Development

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Developers Guide to Blockchain Development

Developers Guide to Blockchain Development

To understand the risks posed by AI, follow the money – O’Reilly

To understand the risks posed by AI, follow the money – O’Reilly

Amazon Q Business, now generally available, helps boost workforce productivity with generative AI

Amazon Q Business, now generally available, helps boost workforce productivity with generative AI

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
Accenture creates a regulatory document authoring solution using AWS generative AI services

Accenture creates a regulatory document authoring solution using AWS generative AI services

February 6, 2024
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In