Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Google Health Researchers Propose HEAL: A Methodology to Quantitatively Assess whether Machine Learning-based Health Technologies Perform Equitably

March 21, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Health equity is a pressing global concern characterized by persistent and widening health disparities. These disparities, rooted in multifaceted barriers across society, include limited access to healthcare, differential clinical treatment, and variations in diagnostic effectiveness. The integration of artificial intelligence (AI) into clinical decision-making processes offers promise in addressing healthcare challenges, but there’s a recognized risk that AI implementation may exacerbate existing inequities. Academic, clinical, and regulatory sectors are thus calling for a thorough assessment and mitigation of these potential effects through a health equity lens.

The concept of health equity, as defined by public health organizations, centers on providing everyone with a fair opportunity to achieve optimal health outcomes. Unlike equality, health equity acknowledges that individuals facing greater barriers to health improvement may require different or additional efforts to attain fairness in health outcomes. Furthermore, health equity differs from fairness in AI for healthcare, which often prioritizes equal performance across patient populations rather than addressing existing health disparities.

To address the imperative for assessing health equity in AI technologies, a methodology called the Health Equity Assessment for Machine Learning Performance (HEAL) framework is proposed by Researchers from Google Health. This framework offers a quantitative approach to determining whether an AI tool’s performance is equitable, assessing whether the AI model performs better for groups with worse average health outcomes compared to others. By prioritizing and measuring model performance relative to disparate health outcomes influenced by various structural inequities, the HEAL framework aims to ensure health equity considerations are integrated into AI development processes.

The HEAL framework is applied to a dermatology AI model to illustrate its utility. This application demonstrates how the framework can evaluate health equity considerations in AI technologies, offering insights into how these technologies may impact different patient populations. Through this illustrative example, the HEAL framework showcases its potential utility in evaluating and addressing health equity concerns in AI development processes.

Moving forward, there’s a need to encourage explicit assessment of health equity implications in AI development processes. By prioritizing efforts to address health inequities for subpopulations disproportionately affected by structural barriers, the framework aims to reduce disparities in health outcomes. While the HEAL metric may not capture causal relationships or quantify the direct impact of new AI technologies on reducing health outcome disparities, it serves as a valuable tool for identifying instances where model performance may not align with priorities to address pre-existing health disparities.

In conclusion, the HEAL framework represents a significant step forward in addressing health equity considerations in AI technologies. Continued research and development are necessary to refine and expand the application of this framework across various healthcare domains. Integrating equity assessments into AI model development processes has coordinated the exacerbation of health disparities and promoted more equitable healthcare outcomes for all individuals.

Check out the Paper and Blog. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter.

Don’t Forget to join our 38k+ ML SubReddit

Arshad is an intern at MarktechPost. He is currently pursuing his Int. MSc Physics from the Indian Institute of Technology Kharagpur. Understanding things to the fundamental level leads to new discoveries which lead to advancement in technology. He is passionate about understanding the nature fundamentally with the help of tools like mathematical models, ML models and AI.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



Source link

Tags: AssessEquitablyGoogleHEALhealthLearningBasedMachineMethodologyperformProposeQuantitativelyResearchersTechnologies
Previous Post

Dow Jones Hits Record High On Fed Rate Outlook, 5 Stocks In Buy Areas; Micron Soars Late

Next Post

Generative Artificial Intelligence Implications for Industry Experts

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Generative Artificial Intelligence Implications for Industry Experts

Generative Artificial Intelligence Implications for Industry Experts

‘From exotic fruits to immunity boosters’: Survey reveals health-conscious shopping trends in Bangalore and Hyderabad

‘From exotic fruits to immunity boosters’: Survey reveals health-conscious shopping trends in Bangalore and Hyderabad

Why Verifying Email Addresses is Crucial for Your Marketing Strategy

Why Verifying Email Addresses is Crucial for Your Marketing Strategy

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In