Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Google DeepMind Research Introduced SODA: A Self-Supervised Diffusion Model Designed for Representation Learning

December 4, 2023
in Data Science & ML
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Google DeepMind’s researchers have developed SODA, an AI model that addresses the problem of encoding images into efficient latent representations. With SODA, seamless transitions between images and semantic attributes are made possible, allowing for interpolation and morphing across various image categories.

Diffusion models have revolutionized visual synthesis, excelling in diverse tasks like image, video, audio, and text synthesis, planning, and drug discovery. While prior studies focused on their generative capabilities, this study explores the underexplored realm of diffusion models’ representational capacity. The study comprehensively evaluates diffusion-based representation learning across various datasets and tasks, shedding light on their potential derived solely from images.

The proposed model emphasizes the importance of synthesis in learning and highlights the significant representational capacity of diffusion models. SODA is a self-supervised model incorporating an information bottleneck to achieve disentangled and informative representations. SODA showcases its strengths in classification, reconstruction, and synthesis tasks, including high-performance few-shot novel view generation and semantic trait controllability.

A SODA model utilizes an information bottleneck to create disentangled representations through self-supervised diffusion. This approach uses pre-training based on distribution to improve representation learning, resulting in strong performance in classification and novel view synthesis tasks. SODA’s capabilities have been tested by extensively evaluating diverse datasets, including robust performance on ImageNet.

SODA has been proven to excel in representation learning with impressive results in classification, disentanglement, reconstruction, and novel view synthesis. It has been found to improve disentanglement metrics significantly compared to variational methods. In ImageNet linear-probe classification, SODA outperforms other discriminative models and demonstrates robustness against data augmentations. Its versatility is evident in generating novel views and seamless attribute transitions. Through empirical study, SODA has been established as an effective, robust, and versatile approach for representation learning, supported by detailed analyses, evaluation metrics, and comparisons with other models.

In conclusion, SODA demonstrates remarkable proficiency in representation learning, producing robust semantic representations for various tasks, including classification, reconstruction, editing, and synthesis. It employs an information bottleneck to focus on essential image qualities and outperforms variational methods in disentanglement metrics. SODA’s versatility is evident in its ability to generate novel views, transition semantic attributes, and handle richer conditional information such as camera perspective.

As future work, it would be valuable to delve deeper into the field of SODA by exploring dynamic compositional scenes of 3D datasets and bridging the gap between novel view synthesis and self-supervised learning. Further investigation is needed regarding model structure, implementation, and evaluation details, such as preliminaries of diffusion models, hyperparameters, training techniques, and sampling methods. Conducting ablation and variation studies is recommended to understand design choices better and explore alternative mechanisms, cross-attention, and layer-wise modulation. Doing so can enhance performance in various tasks like 3D novel view synthesis, image editing, reconstruction, and representation learning.

Check out the Paper and Project. All credit for this research goes to the researchers of this project. Also, don’t forget to join our 33k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more.

If you like our work, you will love our newsletter.

Hello, My name is Adnan Hassan. I am a consulting intern at Marktechpost and soon to be a management trainee at American Express. I am currently pursuing a dual degree at the Indian Institute of Technology, Kharagpur. I am passionate about technology and want to create new products that make a difference.

✅ [Featured AI Model] Check out LLMWare and It’s RAG- specialized 7B Parameter LLMs



Source link

Tags: DeepMindDesignedDiffusionGoogleIntroducedLearningmodelRepresentationResearchSelfSupervisedSODA
Previous Post

Summary report optimization in the Privacy Sandbox Attribution Reporting API – Google Research Blog

Next Post

Build an Open Data Lakehouse with Iceberg Tables, Now in Public Preview

Related Posts

AI Compared: Which Assistant Is the Best?
Data Science & ML

AI Compared: Which Assistant Is the Best?

June 10, 2024
5 Machine Learning Models Explained in 5 Minutes
Data Science & ML

5 Machine Learning Models Explained in 5 Minutes

June 7, 2024
Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’
Data Science & ML

Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’

June 7, 2024
How to Learn Data Analytics – Dataquest
Data Science & ML

How to Learn Data Analytics – Dataquest

June 6, 2024
Adobe Terms Of Service Update Privacy Concerns
Data Science & ML

Adobe Terms Of Service Update Privacy Concerns

June 6, 2024
Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart
Data Science & ML

Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart

June 6, 2024
Next Post
Build an Open Data Lakehouse with Iceberg Tables, Now in Public Preview

Build an Open Data Lakehouse with Iceberg Tables, Now in Public Preview

AI networks are more vulnerable to malicious attacks than previously thought

AI networks are more vulnerable to malicious attacks than previously thought

How financial institutions can deliver value from investment in digital operational resilience

How financial institutions can deliver value from investment in digital operational resilience

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In