Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Google DeepMind Introduces AlphaGeometry: An Olympiad-Level Artificial Intelligence System for Geometry

January 22, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


In a recent study, a team of researchers from Google DeepMind has introduced AlphaGeometry, an Artificial Intelligence (AI) system that can easily solve geometry Olympiad questions almost as well as a human gold medallist. Olympiad-level mathematical theorem proofs are noteworthy accomplishments that represent sophisticated automated reasoning abilities, especially in the difficult field of pre-university mathematics.

Given their difficulty, these issues serve as a standard for thinking at the human level. However, there are challenges when it comes to the time and expense required to convert human arguments into formats that machines can verify on existing Machine Learning approaches, particularly in mathematical disciplines. Geometry presents an even greater barrier because of its unique translation issues, which leaves ML with a deficiency of training data.

AlphaGeometry is a theorem prover tailored to Euclidean plane geometry to overcome these drawbacks. It adopts a unique strategy by avoiding using human demonstrations and rather building a large dataset for training by synthesizing millions of theorems and proofs at different levels of complexity. A neural language model fully trained from scratch using the created synthetic data has been integrated into this neuro-symbolic system. A symbolic deduction engine uses the model as a guide to help it navigate through the many branching points in difficult mathematical problems.

AlphaGeometry’s language model and symbolic deduction engine work together in a purposefully planned manner. The language model is an essential component when it comes to directing the symbolic deduction engine toward logical answers for geometry issues. Olympiad geometry problems frequently feature diagrams that, to be solved more easily, call for adding additional geometric constructions like points, lines, or circles. Considering the wide range of options, AlphaGeometry’s language model attempts to forecast which new constructs would be most useful to include. These forecasts are useful hints that help the symbolic deduction engine fill in the blanks, infer more information about the diagram, and get closer to the answer.

AlphaGeometry has been evaluated on the IMO-AG-30 benchmark, which consists of 30 classical geometry questions adapted from the International Mathematical Olympiad (IMO) contests. It has performed better than baselines incorporating language models such as GPT-4 and Wu’s technique, which were earlier state-of-the-art geometry theorem provers.

On the IMO-AG-30 benchmark, AlphaGeometry demonstrated its ability to solve complicated geometry issues by obtaining a success rate of 25 out of 30 questions. Its problem-solving ability is also comparable to that of an average International Mathematical Olympiad (IMO) gold medallist.

AlphaGeometry produces human-readable proofs, which improve the interpretability of its answers. In addition to solving every geometry problem in the IMO contests from 2000 and 2015 under human expert judgment, AlphaGeometry also found a more generalized version of a translated IMO theorem from 2004. This demonstrates how adaptable and successful AlphaGeometry is at solving challenging mathematical problems, advancing the automation of reasoning at the pinnacles of mathematical competition.

In conclusion, AlphaGeometry is a ground-breaking accomplishment as it is the first computer program to prove theorems pertaining to Euclidean plane geometry more effectively than the average IMO candidate.

Check out the Paper and Github. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our 36k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our Telegram Channel

Tanya Malhotra is a final year undergrad from the University of Petroleum & Energy Studies, Dehradun, pursuing BTech in Computer Science Engineering with a specialization in Artificial Intelligence and Machine Learning.She is a Data Science enthusiast with good analytical and critical thinking, along with an ardent interest in acquiring new skills, leading groups, and managing work in an organized manner.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



Source link

Tags: AlphaGeometryartificialDeepMindGeometryGoogleintelligenceIntroducesOlympiadLevelsystem
Previous Post

Terraform Labs files for bankruptcy protection in the U.S.

Next Post

Ondo Points Program Launches | Blockchain News

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Ondo Points Program Launches | Blockchain News

Ondo Points Program Launches | Blockchain News

The Role of Accreditation in Blockchain Certification Programs

The Role of Accreditation in Blockchain Certification Programs

How To Make A Shopify Store Live: 7 Steps

How To Make A Shopify Store Live: 7 Steps

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In