Friday, May 9, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

GNNBench: A Plug-and-Play Deep Learning Benchmarking Platform Focused on System Innovation

April 16, 2024
in Data Science & ML
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


The absence of a standardized benchmark for Graph Neural Networks GNNs has led to overlooked pitfalls in system design and evaluation. Existing benchmarks like Graph500 and LDBC need to be revised for GNNs due to differences in computations, storage, and reliance on deep learning frameworks. GNN systems aim to optimize runtime and memory without altering model semantics. However, many need help with design flaws and consistent evaluations, hindering progress. More than manually correcting these flaws is required; a systematic benchmarking platform must be established to ensure fairness and consistency across assessments. Such a platform would streamline efforts and promote innovation in GNN systems.

William & Mary researchers have developed GNNBENCH, a versatile platform tailored for system innovation in GNNs. It streamlines the exchange of tensor data, supports custom classes in System APIs, and seamlessly integrates with frameworks like PyTorch and TensorFlow. By combining multiple GNN systems, GNNBENCH exposed critical measurement issues, aiming to alleviate researchers from integration complexities and evaluation inconsistencies. The platform’s stability, productivity enhancements, and framework-agnostic nature enable rapid prototyping and fair comparisons, driving advancements in GNN system research while addressing integration challenges and ensuring consistent evaluations.

In striving for fair and productive benchmarking, GNNBENCH addresses key challenges existing GNN systems face, aiming to provide stable APIs for seamless integration and accurate evaluations. These challenges include instability due to varying graph formats and kernel variants across different systems. PyTorch and TensorFlow plugins present limitations in accepting custom graph objects, while GNN operations require additional metadata in system APIs, leading to inconsistencies. DGL’s framework overhead and complex integration process further complicate system integration. Despite recent DNN benchmark platforms, GNN benchmarking still needs to be explored. PyTorch-Geometric (PyG) faces similar plugin limitations. These challenges underscore the need for a standardized and extensible benchmarking framework like GNNBENCH.

GNNBENCH introduces a producer-only DLPack protocol, simplifying tensor exchange between DL frameworks and third-party libraries. Unlike traditional approaches, this protocol enables GNNBENCH to utilize DL framework tensors without ownership transfer, enhancing system flexibility and reusability. Generated integration codes facilitate seamless integration with different DL frameworks, promoting extensibility. The accompanying domain-specific language (DSL) automates code generation for system integration, offering researchers a streamlined approach to prototype and implement kernel fusion or other system innovations. Such mechanisms empower GNNBENCH to adapt to diverse research needs efficiently and effectively.

GNNBENCH offers versatile integration with popular deep learning frameworks like PyTorch, TensorFlow, and MXNet, facilitating seamless platform experimentation. While the primary evaluation leverages PyTorch, compatibility with TensorFlow, demonstrated particularly for GCN, underscores its adaptability to any mainstream DL framework. This adaptability ensures researchers can explore diverse environments without constraint, enabling precise comparisons and insights into GNN performance. GNNBENCH’s flexibility enhances reproducibility and encourages comprehensive evaluation, which is essential for advancing GNN research in varied computational contexts.

In conclusion, GNNBENCH emerges as a pivotal benchmarking platform, fostering productive research and fair evaluations in GNNs. Facilitating seamless integration of various GNN systems sheds light on accuracy issues in original models like TC-GNN and GNNAdvisor. Through its producer-only DLPack protocol and generation of critical integration code, GNNBENCH enables efficient prototyping with minimal framework overhead and memory consumption. Its systematic approach aims to rectify measurement pitfalls, promote innovation, and ensure unbiased evaluations, thereby advancing the field of GNN research.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter.

Don’t Forget to join our 40k+ ML SubReddit

Want to get in front of 1.5 Million AI Audience? Work with us here

Sana Hassan, a consulting intern at Marktechpost and dual-degree student at IIT Madras, is passionate about applying technology and AI to address real-world challenges. With a keen interest in solving practical problems, he brings a fresh perspective to the intersection of AI and real-life solutions.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



Source link

Tags: BenchmarkingDeepFocusedGNNBenchInnovationLearningPlatformPlugandPlaysystem
Previous Post

Harvard Researchers Unveil How Strategic Text Sequences Can Manipulate AI-Driven Search Results

Next Post

Samsung Secures $6.4 Billion in US Government Grants for Chip Manufacturing Expansion in Texas

Related Posts

AI Compared: Which Assistant Is the Best?
Data Science & ML

AI Compared: Which Assistant Is the Best?

June 10, 2024
5 Machine Learning Models Explained in 5 Minutes
Data Science & ML

5 Machine Learning Models Explained in 5 Minutes

June 7, 2024
Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’
Data Science & ML

Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’

June 7, 2024
How to Learn Data Analytics – Dataquest
Data Science & ML

How to Learn Data Analytics – Dataquest

June 6, 2024
Adobe Terms Of Service Update Privacy Concerns
Data Science & ML

Adobe Terms Of Service Update Privacy Concerns

June 6, 2024
Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart
Data Science & ML

Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart

June 6, 2024
Next Post
Samsung Secures $6.4 Billion in US Government Grants for Chip Manufacturing Expansion in Texas

Samsung Secures $6.4 Billion in US Government Grants for Chip Manufacturing Expansion in Texas

Researchers at Stanford Propose a Family of Representation Finetuning (ReFT) Methods that Operates on a Frozen Base Model and Learn Task-Specific Interventions on Hidden Representations

Researchers at Stanford Propose a Family of Representation Finetuning (ReFT) Methods that Operates on a Frozen Base Model and Learn Task-Specific Interventions on Hidden Representations

How to Explain Reasons for Job Change in Interviews? [2024]

How to Explain Reasons for Job Change in Interviews? [2024]

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In