Friday, May 9, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Enhancing Graph Data Embeddings with Machine Learning: The Deep Manifold Graph Auto-Encoder (DMVGAE/DMGAE) Approach

January 19, 2024
in AI Technology
Reading Time: 3 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Manifold learning, rooted in the manifold assumption, reveals low-dimensional structures within input data, positing that the data exists on a low-dimensional manifold within a high-dimensional ambient space. Deep Manifold Learning (DML), facilitated by deep neural networks, extends to graph data applications. For instance, MGAE leverages auto-encoders in the graph domain to embed node features and adjacency matrices. Drawing inspiration from MGAE and DLME, researchers at Zhejiang University focus on learning graph embeddings while preserving distances between nodes.

In contrast to existing methods, they address the crowding problem by efficiently preserving the topological structure for latent embeddings of graph data under a specified distribution. Consequently, they present the Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) method for attributed graph embedding to enhance the stability and quality of representations. 

They transform the challenge of preserving structure information into maintaining inter-node similarity between the non-Euclidean, high-dimensional latent space and the Euclidean input space. For DMVGAE, their approach involves employing a variational autoencoder mechanism to learn the distribution and derive codes. 

They introduce a graph geodesic similarity to capture graph structure and node features, measuring node-to-node relationships in input and latent spaces. A t-distribution is a kernel function to fit node neighborhoods, balancing intra-cluster and inter-cluster relationships. Their method effectively combines manifold learning and auto-encoder-based techniques for attributed graph embedding, recognizing the distinct properties of graphs in terms of combinatorial features and variational auto-encoders about data distribution.

In summary, their contributions encompass obtaining topological and geometric properties of graph data under a predefined distribution, enhancing the stability and quality of learned representations, and addressing the crowding problem. They introduced manifold learning loss incorporating graph structure and node feature information to preserve node-to-node geodesic similarity. Extensive experiments demonstrate state-of-the-art performance across various benchmark tasks.

The proposed method preserves node-to-node geodesic similarity between the original and latent space under a predefined distribution. Outperforming state-of-the-art baseline algorithms significantly across various downstream tasks on popular datasets demonstrates this approach’s effectiveness. 

Their experiments on standard benchmarks provide evidence of the effectiveness of the proposed solution. Looking ahead, they aim to extend their work by incorporating various types of noise into the provided graph. This addition is crucial in real-life scenarios to enhance the model’s robustness, prevent attacks, and ensure adaptability to diverse and dynamic graph environments. The researchers commit to releasing the code after acceptance, aiming to facilitate further research and application of the proposed method.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our 36k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our Telegram Channel

\"\"

Arshad is an intern at MarktechPost. He is currently pursuing his Int. MSc Physics from the Indian Institute of Technology Kharagpur. Understanding things to the fundamental level leads to new discoveries which lead to advancement in technology. He is passionate about understanding the nature fundamentally with the help of tools like mathematical models, ML models and AI.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



Source link

Tags: ApproachAutoEncoderdataDeepDMVGAEDMGAEEmbeddingsEnhancinggraphLearningMachineManifold
Previous Post

Cellecor Gadgets to raise Rs 10.20 crore via NCDs

Next Post

AI Can Boost Service for Vulnerable Customers

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
AI Can Boost Service for Vulnerable Customers

AI Can Boost Service for Vulnerable Customers

Solo Stove Burns Marketing Team Over Snoop Campaign

Solo Stove Burns Marketing Team Over Snoop Campaign

The Best B2B SaaS Marketing Strategies with Proven Track Records

The Best B2B SaaS Marketing Strategies with Proven Track Records

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In