Saturday, May 10, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Do Large Language Models (LLMs) Relearn from Removed Concepts?

January 11, 2024
in AI Technology
Reading Time: 3 mins read
0 0
A A
0
Share on FacebookShare on Twitter


In the advancing field of Artificial Intelligence (AI) and Natural Language Processing (NLP), understanding how language models adapt, learn, and retain essential concepts is significant. In recent research, a team of researchers has discussed neuroplasticity and the remapping ability of Large Language Models (LLMs).

The ability of models to adjust and restore conceptual representations even after significant neuronal pruning is referred to as neuroplasticity. After pruning both significant and random neurons, models can achieve high performance again. This contradicts the conventional idea that eliminating important neurons would result in permanent performance deterioration.

A new study has emphasized the importance of neuroplasticity in relation to model editing. Although model editing aims to eliminate unwanted conceptions, neuroplasticity implies that these concepts can resurface after retraining. Creating models that are safer, more equitable, and more in line requires an understanding of how ideas are represented, redistributed, and reclaimed. Understanding the process of recovering removed concepts can also improve language models’ resilience.

The study has shown that models can swiftly recover from pruning by moving sophisticated concepts back to previous layers and redistributing trimmed concepts to neurons that share comparable semantics. This implies that LLMs have the ability to integrate both new and old concepts within a single neuron, which is a phenomenon known as polysemantic capabilities. Though neuron pruning improves the interpretability of model concepts, the findings have highlighted the difficulties in permanently eliminating concepts to increase model safety.

The team has also emphasized the significance of tracking the reemergence of concepts and creating strategies to prevent the relearning of risky notions. This becomes essential to guarantee stronger model editing. The study has highlighted how idea representations in LLMs remain flexible and resilient even if certain concepts are eliminated. Gaining this understanding is essential to improving language models’ safety and dependability as well as the field of model editing.

The team has summarized their primary contributions as follows.

  • Quick Neuroplasticity: After a few retraining epochs, the model quickly demonstrates neuroplasticity and resumes performance.
  • Concept Remapping: Neurons in previous layers are effectively remapped to concepts excised from later layers.
  • Priming for Relearning: After first capturing similar concepts, neurons that recovered pruned concepts may have been primed for relearning.
  • Polysemantic Neurons: Relearning neurons demonstrate polysemantic qualities by combining old and new ideas, demonstrating the model’s capacity to represent a variety of meanings.

In conclusion, the study has mainly focused on LLMs that have been optimized for named entity recognition. The team has retrained the model, induced neuroplasticity, and pruned significant concept neurons to get the model to function again. The study has looked at how the distribution of concepts shifts and studies the connection between previously linked concepts to a pruned neuron and the concepts that it retrains to learn.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our 35k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter.

New Paper 🎉: https://t.co/pgrdha94sw Can language models relearn removed concepts? Model editing aims to eliminate unwanted concepts through neuron pruning. LLMs demonstrate a remarkable capacity to adapt and regain conceptual representations which have been removed🧵1/8 pic.twitter.com/Bbek0bFPFm— Fazl Barez (@FazlBarez) January 6, 2024

Tanya Malhotra is a final year undergrad from the University of Petroleum & Energy Studies, Dehradun, pursuing BTech in Computer Science Engineering with a specialization in Artificial Intelligence and Machine Learning. She is a Data Science enthusiast with good analytical and critical thinking, along with an ardent interest in acquiring new skills, leading groups, and managing work in an organized manner.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



Source link

Tags: ConceptslanguageLargeLLMsmodelsRelearnRemoved
Previous Post

Big Brand Content: 3 Hot Takes

Next Post

Q-Refine: A General Refiner to Optimize AI-Generated Images from Both Fidelity and Aesthetic Quality Levels

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
Q-Refine: A General Refiner to Optimize AI-Generated Images from Both Fidelity and Aesthetic Quality Levels

Q-Refine: A General Refiner to Optimize AI-Generated Images from Both Fidelity and Aesthetic Quality Levels

Modernizing mainframe applications with a boost from generative AI

Modernizing mainframe applications with a boost from generative AI

5 ways IBM helps manufacturers maximize the benefits of generative AI

5 ways IBM helps manufacturers maximize the benefits of generative AI

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
How To Build A Quiz App With JavaScript for Beginners

How To Build A Quiz App With JavaScript for Beginners

February 22, 2024
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In