Saturday, May 31, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


This paper delves into the realm of uncertainty quantification in large language models (LLMs) to pinpoint scenarios where uncertainty in responses to queries is significant. The study covers both epistemic and aleatoric uncertainties. Epistemic uncertainty arises from a lack of knowledge or data about the ground truth, while aleatoric uncertainty stems from inherent randomness in the prediction problem. Properly identifying these uncertainties is crucial for enhancing the reliability and truthfulness of LLM responses, especially in detecting and mitigating hallucinations or inaccurate responses generated by these models.

There are currently several methods for detecting hallucinations in large language models (LLMs), each with its own set of limitations. One common method is the probability of the greedy response (T0), which assesses the likelihood of the most probable response generated by the model. Another method is the semantic-entropy method (S.E.), which measures the entropy of the semantic distribution of the responses. Finally, the self-verification method (S.V.) involves the model verifying its responses to estimate uncertainty.

Despite their usefulness, these methods have notable drawbacks. The probability of the greedy response is often sensitive to the size of the label set, meaning it may not perform well when there are many possible responses. The semantic-entropy method (S.E.) relies on first-order scores that do not consider the joint distribution of responses, which can lead to incomplete uncertainty assessments. Similarly, the self-verification method (S.V.) does not account for the full range of possible responses the model can generate, potentially overlooking significant aspects of uncertainty.

To overcome the limitations of current methods, the proposed approach involves creating a combined distribution for multiple responses from the LLM for a specific query using iterative prompting. This involves asking the LLM to generate a response to a query and then asking it to generate subsequent responses while including previous ones in the prompt. The joint distribution approximates the ground truth if the responses are independent, indicating low epistemic uncertainty. However, if the responses are influenced by each other, it signifies high epistemic uncertainty. This iterative prompting procedure allows the researchers to derive an information-theoretic metric of epistemic uncertainty. They quantify this by measuring the mutual information (MI) of the joint distribution of responses, which is insensitive to aleatoric uncertainty. A finite-sample estimator for this MI is developed, proving to have negligible error in practical applications despite the potentially infinite support of LLM outputs.

An algorithm for hallucination detection based on this MI metric is also discussed. By setting a threshold through a calibration procedure, the method demonstrates superior performance compared to traditional entropy-based approaches, especially in datasets with mixed single-label and multi-label queries. It maintains high recall rates while minimizing errors, making it a robust tool for improving the reliability of LLM outputs.

This paper presents a significant advancement in quantifying uncertainty in LLMs by distinguishing between epistemic and aleatoric uncertainty. The proposed iterative prompting and mutual information-based metric offer a more nuanced understanding of LLM confidence, enhancing the detection of hallucinations and improving overall response accuracy. This approach addresses a critical limitation of existing methods and provides a practical and effective solution for real-world applications of LLMs.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 44k+ ML SubReddit

Shreya Maji is a consulting intern at MarktechPost. She pursued her B.Tech at the Indian Institute of Technology (IIT), Bhubaneswar. An AI enthusiast, she enjoys staying updated on the latest advancements. Shreya is particularly interested in the real-life applications of cutting-edge technology, especially in the field of data science.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



Source link

Tags: DecipheringDoubtLLMNavigatingResponsesUncertainty
Previous Post

Israeli forces rescue four hostages from Gaza Strip

Next Post

Upgrades for Best Buy and Lululemon By Investing.com

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Validating the Causal Impact of the Synthetic Control Method | by Ryan O’Sullivan | Jun, 2024
AI Technology

Validating the Causal Impact of the Synthetic Control Method | by Ryan O’Sullivan | Jun, 2024

June 8, 2024
Next Post
Upgrades for Best Buy and Lululemon By Investing.com

Upgrades for Best Buy and Lululemon By Investing.com

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

Decoding Decoder-Only Transformers: Insights from Google DeepMind's Paper

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
Accenture creates a regulatory document authoring solution using AWS generative AI services

Accenture creates a regulatory document authoring solution using AWS generative AI services

February 6, 2024
The 15 Best Python Courses Online in 2024 [Free + Paid]

The 15 Best Python Courses Online in 2024 [Free + Paid]

April 13, 2024
Managing PDFs in Node.js with pdf-lib

Managing PDFs in Node.js with pdf-lib

November 16, 2023
Reshoring manufacturing to the US: The role of AI, automation and digital labor

Reshoring manufacturing to the US: The role of AI, automation and digital labor

December 21, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In