Friday, May 9, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Can We Transfer the Capabilities of LLMs like LLaMA from English to Non-English Languages? A Deep Dive into Multilingual Model Proficiency

January 6, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Significant achievements have been made in LLMs, exemplified by ChatGPT, excelling in complex language processing tasks. But most mainstream LLMs like LLaMA are pre-trained on English-dominant corpus. Another example is LaMDA, proposed by Google, which is pre-trained on text containing over 90% English. This limits the performance of LLMs in other non-English languages, which is a matter of concern for non-English users.

Recent strides in LLMs like ChatGPT, PaLM, and LLaMA showcase advanced reasoning, planning, and experiential learning capabilities. While many LLMs comprehend diverse languages, imbalanced language resources pose challenges. BLOOM’s pretraining on 46 languages lacks diversity, and LLaMA faces difficulties with non-English languages. Investigations into vocabulary extension and transfer processes reveal efficient language transfer at minimal cost. 

The researchers at the School of Computer Science, Fudan University, have focused on effectively transferring language generation capabilities and following instructions in non-English. To address this, they have analyzed the impact of key factors such as vocabulary extension, further pretraining, and instruction tuning on transfer. Evaluation involves four standardized benchmarks. 

The research explores transferring language generation and instruction-following capabilities to non-English languages using LLaMA. Due to its rich linguistic resources, it employs Chinese as the starting point, extending findings to over ten low-resource languages. Models include LLaMA, LLaMA2, Chinese LLaMA, Chinese LLaMA2, and Open Chinese LLaMA, each with different pretraining scales. Evaluation involves benchmarks like LLM-Eval, C-Eval, MMLU, AGI-Eval, and GAOKAO-Bench. Response quality is assessed based on accuracy, fluency, informativeness, logical coherence, and harmlessness. The study achieves state-of-the-art performance with minimal pretraining data, providing insights for non-English LLM development.

The study investigates language transfer to non-English languages using LLaMA, focusing on vocabulary extension, training scale impact, and multilingual proficiency. Surprisingly, extending the vocabulary diminishes performance in Chinese. While increased pretraining scale initially improves response quality, it plateaus, emphasizing language generation over knowledge acquisition. English proficiency suffers with exclusive Chinese training. Evaluations across 13 low-resource languages show SFT data boost response quality, with Arabic, Indonesian, and Vietnamese excelling. Code-switching samples suggest LLaMA learns cross-lingual semantic alignment during pretraining, enhancing transferability. The study emphasizes nuanced approaches for effective non-English LLM development.  

\"\"

Table 1: Evaluation results of model response quality for 13 low-resource languages on the LLM-Eval. ACC., F., LC., H., INFO., and AVG. Respectively denote accuracy, fluency, logical coherence, harmlessness, informativeness, and average.Researchers have focused on effectively transferring language generation capabilities and following instructions to a non-English language. Specifically, they have conducted a comprehensive empirical study to analyze the necessity of vocabulary extension and the required training scale for effective transfer. They found that vocabulary extension is unnecessary and that comparable transfer performance to state-of-the-art models can be achieved with less than 1% of the further pretraining data. Similar results are observed from the extension experiments on the 13 low-resource languages. 

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our 35k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

\"\"

Nikhil is an intern consultant at Marktechpost. He is pursuing an integrated dual degree in Materials at the Indian Institute of Technology, Kharagpur. Nikhil is an AI/ML enthusiast who is always researching applications in fields like biomaterials and biomedical science. With a strong background in Material Science, he is exploring new advancements and creating opportunities to contribute.

🐝 Get stunning professional headshots effortlessly with Aragon- TRY IT NOW!.



Source link

Tags: CapabilitiesDeepDiveENGLISHLanguagesLlamaLLMsmodelmultilingualNonEnglishProficiencyTransfer
Previous Post

Eerily, AI Can Now Do Your KYC !

Next Post

fpi investing: FPIs invest Rs 4,773 crore in Indian equities in first week of January

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
fpi investing: FPIs invest Rs 4,773 crore in Indian equities in first week of January

fpi investing: FPIs invest Rs 4,773 crore in Indian equities in first week of January

Blinken to meet Turkish and Greek leaders as Gaza diplomacy tour begins By Reuters

Blinken to meet Turkish and Greek leaders as Gaza diplomacy tour begins By Reuters

Mysterious $1.17 Million Bitcoin Transfer to Bitcoin Creator Nakamoto Wallet

Mysterious $1.17 Million Bitcoin Transfer to Bitcoin Creator Nakamoto Wallet

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In