Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Can We Optimize AI for Information Retrieval with Less Compute? This AI Paper Introduces InRanker: a Groundbreaking Approach to Distilling Large Neural Rankers

January 20, 2024
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


The practical deployment of multi-billion parameter neural rankers in real-world systems poses a significant challenge in information retrieval (IR). These advanced neural rankers demonstrate high effectiveness but are hampered by their substantial computational requirements for inference, making them impractical for production use. This dilemma poses a critical problem in IR, as it is necessary to balance the benefits of these large models with their operational feasibility. 

Significant research efforts have been made in the field, which include the utilization of synthetic text from PaLM 540B and GPT-3 175B for knowledge transfer to smaller models like T5, multi-step reasoning using FlanT5 and code-DaVinci-002 and distillation of cross-attention scores for click-through-rate prediction, integrating contextual features. Several researchers have worked on distilling the self-attention module of transformers. Advancements have also been made using MarginMSE loss for two distinct purposes: one for distilling knowledge across different architectural designs and another for refining sparse neural models. Pseudo-labels from advanced cross-encoder models like BERT are one of the methods for generating synthetic data for domain adaptation of dense passage retrievers.

Researchers at UNICAMP, NeuralMind, and Zeta Alpha have proposed a method called InRanker for distilling large neural rankers into smaller versions with increased effectiveness on out-of-domain scenarios. The approach involves two distillation phases: (1) training on existing supervised soft teacher labels and (2) training on teacher soft labels for synthetic queries generated using a large language model. 

\"\"

The first phase uses real-world data from the MS MARCO dataset to familiarize the student model with the ranking task. The second phase utilizes synthetic queries generated by an LLM based on randomly sampled documents from the corpus. It is aimed to improve zero-shot generalization using synthetic data generated from an LLM. The distillation process allows smaller models like monoT5-60M and monoT5-220M to improve their effectiveness by using the teacher’s knowledge despite being significantly smaller.

\"\"/

The research successfully demonstrated that smaller models like monoT5-60M and monoT5-220M, distilled using the InRanker methodology, significantly improved their effectiveness in out-of-domain scenarios. Despite being substantially smaller, these models were able to match and sometimes surpass the performance of their larger counterparts in various test environments. This advancement is particularly beneficial in real-world applications with limited computational resources, providing a more practical and scalable solution for IR tasks.

\"\"

In conclusion, this research marks a significant advancement in IR, presenting a practical solution to the challenge of using large neural rankers in production environments. The InRanker method effectively distills the knowledge of large models into smaller, more efficient versions without compromising out-of-domain effectiveness. This approach addresses the computational constraints of deploying large models and opens new avenues for scalable and efficient IR. The findings have substantial implications for future research and practical applications in the field of IR.

Check out the Paper and Github. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our 36k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our Telegram Channel

\"\"

Source link

Tags: ApproachcomputeDistillingGroundbreakingInformationInRankerIntroducesLargeNeuralOptimizePaperRankersretrieval
Previous Post

Winter Youth Olympics in South Korea hit by heavy snowfall By Reuters

Next Post

REITs end lower than last week in absence of a positive catalyst (BATS:REM)

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
REITs end lower than last week in absence of a positive catalyst (BATS:REM)

REITs end lower than last week in absence of a positive catalyst (BATS:REM)

To Data or Not to Data.. The question is not anymore whether we… | by Erdogan Taskesen | Jan, 2024

To Data or Not to Data.. The question is not anymore whether we… | by Erdogan Taskesen | Jan, 2024

Parameter-Efficient Sparsity Crafting (PESC): A Novel AI Approach to Transition Dense Models to Sparse Models Using a Mixture-of-Experts (Moe) Architecture

Parameter-Efficient Sparsity Crafting (PESC): A Novel AI Approach to Transition Dense Models to Sparse Models Using a Mixture-of-Experts (Moe) Architecture

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In