Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Can Autoformalization Bridge the Gap Between Informal and Formal Language? Meet MMA: A Multilingual and Multi-Domain Dataset Revolutionizing the Field

November 15, 2023
in AI Technology
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Mathematical content described in a formal language that is computer-checkable mechanically is referred to as standard mathematics. Mathematicians use formal languages, which are incorporated with tools for proofreading, such as HOL Light, Isabelle, Coq, and Lean. Converting natural language sources into verifiable formalizations is known as autoformalization. Verifying current mathematical conclusions may be made less expensive using an optimal autoformalization engine. It allows automated reasoning study domains that rely on formal languages, such as automated theorem proving, to access the large quantity of mathematics written in plain language. The ambition of automatically converting informal mathematics into formally provable material is as old as standard mathematics itself. 

Autoformalization could only be taught recently because of advances in neural networks and Neural Machine Translation. Large parallel datasets made up of pairs of sequences that convey the same meaning in both the source and the target languages are usually needed for NMT techniques. Building a parallel dataset in both a formal and natural language that satisfies two requirements at once—that is, that the number of data points is sufficient for the machine learning methods that require a large amount of data and that the natural language component closely resembles how mathematics is written—is the most difficult aspect of autoformalization research. This is challenging because it requires expensive, highly qualified computer science and mathematics specialists to translate informal mathematical knowledge into a formal language manually. 

By using a cutting-edge Large Language Model, GPT-4, to convert the two largest formal corpora, Archive of Formal Proofs in Isabelle and mathlib4 in Lean4, into natural language, the authors of this study addressed the absence of a parallel dataset. The two most important insights that informalization is far simpler than formalization and that a strong LLM may yield a variety of natural language outputs—facilitated this process. Researchers from the University of Cambridge and the University of Edinburgh produced a 332K informal-formal dataset simultaneously, which they call the MMA dataset. As far as they know, this is the first parallel dataset with several formal languages. It has four times as many data points as the largest available dataset. 

They optimized LLaMA-33B, an open-source and very effective LLM, on MMA to provide formal phrases corresponding to informal ones. Then, miniF2F and ProofNet, two autoformalization benchmarks, were used to assess the trained model. After the model was fine-tuned, 16 ‐ 18% of formal statements on the benchmarks that require no or minimum modification could be produced, compared to 0% for the raw model, according to a manual review of 50 outputs from each benchmark. Additionally, they adjusted two similar models independently for the same amount of steps on the Lean4 and Isabelle components of MMA. Their autoformalization performances are notably worse than those of the model trained on multilingual data, indicating the importance of autoformalization training on parallel data, including different formal languages. 

Contributions: 

• They create MMA, a collection of informal-formal pairings, by informalizing all formal assertions from mathlib4 and the Archive of Formal Proofs. 

• They train the first language model that can auto-formalize to multiple languages in the zero-shot setting and manually evaluate it on two auto-formalization benchmarks. This is the first autoformalization dataset containing multiple formal languages, four times larger than the biggest existing dataset. 

• They confirm that language models trained on MMA have robust auto-formalization capabilities and outperform language models trained on monolingual partitions of MMA with the same computational budget in auto-formalization. 

• They make the optimized models available for deduction. In addition, they make the MMA dataset available for anybody to use in training and enriching autoformalization models with other domains and languages.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to join our 32k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and Email Newsletter, where we share the latest AI research news, cool AI projects, and more.

If you like our work, you will love our newsletter..

We are also on Telegram and WhatsApp.

\"\"

Aneesh Tickoo is a consulting intern at MarktechPost. He is currently pursuing his undergraduate degree in Data Science and Artificial Intelligence from the Indian Institute of Technology(IIT), Bhilai. He spends most of his time working on projects aimed at harnessing the power of machine learning. His research interest is image processing and is passionate about building solutions around it. He loves to connect with people and collaborate on interesting projects.

🔥 Join The AI Startup Newsletter To Learn About Latest AI Startups



Source link

Tags: AutoformalizationbridgeDatasetFieldFormalgapInformallanguageMeetMMAMultiDomainmultilingualRevolutionizing
Previous Post

Nigeria At 63: Blockchain Tech Will Play A Role In Nigeria’s Future

Next Post

The AI Superpowers | AI IRL

Related Posts

How insurance companies can use synthetic data to fight bias
AI Technology

How insurance companies can use synthetic data to fight bias

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset
AI Technology

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
How Game Theory Can Make AI More Reliable
AI Technology

How Game Theory Can Make AI More Reliable

June 9, 2024
Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper
AI Technology

Decoding Decoder-Only Transformers: Insights from Google DeepMind’s Paper

June 9, 2024
Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs
AI Technology

Buffer of Thoughts (BoT): A Novel Thought-Augmented Reasoning AI Approach for Enhancing Accuracy, Efficiency, and Robustness of LLMs

June 9, 2024
Deciphering Doubt: Navigating Uncertainty in LLM Responses
AI Technology

Deciphering Doubt: Navigating Uncertainty in LLM Responses

June 9, 2024
Next Post
The AI Superpowers | AI IRL

The AI Superpowers | AI IRL

Episode 8 – Top AI & DataScience News from the week | 11th July  2020

Episode 8 - Top AI & DataScience News from the week | 11th July 2020

14 Emerging Digital Marketing Strategies + Trends For 2021

14 Emerging Digital Marketing Strategies + Trends For 2021

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In