Saturday, May 17, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Build an Open Data Lakehouse with Iceberg Tables, Now in Public Preview

December 4, 2023
in Cloud & Programming
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Apache Iceberg’s ecosystem of diverse adopters, contributors and commercial support continues to grow, establishing itself as the industry standard table format for an open data lakehouse architecture. Snowflake’s support for Iceberg Tables is now in public preview, helping customers build and integrate Snowflake into their lake architecture.

In this blog post, we’ll dive deeper into the considerations for selecting an Iceberg Table catalog and how catalog conversion works

Choosing an Iceberg Table catalog

To give customers flexibility for how they fit Snowflake into their architecture, Iceberg Tables can be configured to use either Snowflake or an external service as the table’s catalog to track metadata. With this public preview, those external catalog options are either “GLUE”, where Snowflake can retrieve table metadata snapshots from AWS Glue Data Catalog, or “OBJECT_STORE”, where Snowflake retrieves metadata snapshots directly from the specified cloud storage location. With these three options, which one should you use?

Are you using Snowflake on AWS and already using Glue Data Catalog for your data lake? If so, then the GLUE catalog integration provides an easy way to start querying those tables with Snowflake. Your other engines that may be writing to the table, such as Apache Spark or Apache Flink, can continue to write, and Snowflake can read. A benefit of the GLUE catalog integration in comparison to OBJECT_STORE is easier table refresh since GLUE doesn’t require a specific metadata file path, while OBJECT_STORE does.

Are you using Snowflake on Azure or GCP and only need Snowflake as a query engine without full read-and-write? In this case, you can integrate Snowflake using the OBJECT_STORE catalog integration. Just like GLUE, your other engines that may be writing to the table, such as Apache Spark or Apache Flink, can continue to write, and Snowflake can read.

Are you not already using any Iceberg catalog? Or do you need full read-and-write from Snowflake? If so, then an Iceberg Table using SNOWFLAKE as the catalog source is ideal. As a fully managed service, Snowflake has built-in features that provide you with high availability across cloud availability zones, which also extends to the Snowflake-managed Iceberg catalog. Spark-based tools, even running on clusters in different clouds or regions, can read the table using the Snowflake Iceberg catalog SDK, which you can learn more about in our documentation.

Are you already using Iceberg and want to start using Snowflake as the table catalog? For this case, we’ve added a simple SQL command that converts an Iceberg Table’s catalog source from GLUE or OBJECT_STORE to SNOWFLAKE without any movement, copying or rewriting of files, making it easy and inexpensive to onboard. Regardless of the chosen Iceberg catalog, all data resides in customers’ cloud storage in open formats, giving them full control.

How catalog conversion works

To see exactly how catalog conversion works, let’s walk through the process step-by-step. Suppose you use Spark to initially create and load data to an Iceberg table.

Now in public preview, you can query those tables from Snowflake by integrating with the catalog (catalog integration) and object storage (external volume).

If you convert the table’s catalog to Snowflake, no Parquet data files are moved or rewritten. Snowflake only generates metadata, making this an inexpensive operation in comparison to a full copy or rewrite of the table.

Now, Snowflake can make changes to the table.

Spark can read the table by getting snapshot information from Snowflake, and reading metadata and data files directly from object storage.

Try it out

Iceberg Tables are supported in all cloud regions except SnowGov regions. If you’d like to try Iceberg Tables, you can get started today by following this quickstart guide. If you’d prefer an instructor-led lab, sign up for a free virtual hands-on lab to be held on January 10, 2024. For more detailed information, please refer to our documentation.

The post Build an Open Data Lakehouse with Iceberg Tables, Now in Public Preview appeared first on Snowflake.



Source link

Tags: BuilddataIceberglakehouseopenpreviewPublictables
Previous Post

Google DeepMind Research Introduced SODA: A Self-Supervised Diffusion Model Designed for Representation Learning

Next Post

AI networks are more vulnerable to malicious attacks than previously thought

Related Posts

Top 20 Javascript Libraries You Should Know in 2024
Cloud & Programming

Top 20 Javascript Libraries You Should Know in 2024

June 10, 2024
Simplify risk and compliance assessments with the new common control library in AWS Audit Manager
Cloud & Programming

Simplify risk and compliance assessments with the new common control library in AWS Audit Manager

June 6, 2024
Simplify Regular Expressions with RegExpBuilderJS
Cloud & Programming

Simplify Regular Expressions with RegExpBuilderJS

June 6, 2024
How to learn data visualization to accelerate your career
Cloud & Programming

How to learn data visualization to accelerate your career

June 6, 2024
BitTitan Announces Seasoned Tech Leader Aaron Wadsworth as General Manager
Cloud & Programming

BitTitan Announces Seasoned Tech Leader Aaron Wadsworth as General Manager

June 6, 2024
Copilot Studio turns to AI-powered workflows
Cloud & Programming

Copilot Studio turns to AI-powered workflows

June 6, 2024
Next Post
AI networks are more vulnerable to malicious attacks than previously thought

AI networks are more vulnerable to malicious attacks than previously thought

How financial institutions can deliver value from investment in digital operational resilience

How financial institutions can deliver value from investment in digital operational resilience

The ‘Chinese Warren Buffett’ gives a moving eulogy for Charlie Munger, calling him the ‘enlightened’ embodiment of ‘modern-day Confucianism’

The ‘Chinese Warren Buffett’ gives a moving eulogy for Charlie Munger, calling him the ‘enlightened’ embodiment of ‘modern-day Confucianism’

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
23 Plagiarism Facts and Statistics to Analyze Latest Trends

23 Plagiarism Facts and Statistics to Analyze Latest Trends

June 4, 2024
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In