Friday, May 9, 2025
News PouroverAI
Visit PourOver.AI
No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing
News PouroverAI
No Result
View All Result

Balancing Privacy and Performance: This Paper Introduces a Dual-Stage Deep Learning Framework for Privacy-Preserving Re-Identification

January 16, 2024
in Data Science & ML
Reading Time: 4 mins read
0 0
A A
0
Share on FacebookShare on Twitter


Person Re-identification (Person Re-ID) in Machine Learning uses deep learning models like convolutional neural networks to recognize and track individuals across different camera views, holding promise for surveillance and public safety but raising significant privacy concerns. The technology’s capacity to track people across locations increases surveillance and security risks, along with potential privacy issues like re-identification attacks and biased outcomes. Ensuring transparency and consent and implementing privacy-preserving measures are crucial for responsible deployment, aiming to balance the technology’s benefits and protect individual privacy rights.

Addressing privacy concerns in person re-identification involves adopting overarching strategies. One prevalent approach includes using anonymization techniques like pixelization or blurring to mitigate the risk of disclosing personally identifiable information (PII) in images. However, these methods may compromise data semantics, affecting overall utility. Another explored avenue is the integration of differential privacy (DP) mechanisms, providing robust privacy guarantees by introducing controlled noise to data. While DP has proven effective in various applications, applying it to unstructured and non-aggregated visual data poses notable challenges.

In this context, a recent research team from Singapore introduces a novel approach. While training a model with a Re-ID objective, their work reveals that deep learning-based Re-ID models encode personally identifiable information in learned features, posing privacy risks. To address this, they propose a dual-stage person Re-ID framework. The first stage involves suppressing PII from discriminative features using a self-supervised de-identification (De-ID) decoder and an adversarial-identity (Adv-ID) module. The second stage introduces controllable privacy through differential privacy, achieved by applying a user-controllable privacy budget to generate a privacy-protected gallery with a Gaussian noise generator.

The authors’ experiment underscores each component’s distinctive contributions to the privacy-preserving person Re-ID model. The study establishes a comprehensive foundation with an in-depth exploration of datasets and implementation specifics. The ablation study then reveals the incremental impact of various model components. The baseline, utilizing ResNet-50, sets the initial benchmark but unveils identity information. Introducing a clean decoder enhances identity preservation, signifying an improvement in ID accuracy.

Diverse de-identification mechanisms, including pixelation, are examined, with pixelation emerging as superior in balancing privacy and utility. The adversarial module effectively removes identifiable information to uphold privacy, albeit impacting Re-ID accuracy. The proposed Privacy-Preserved Re-ID Model (1 Stage) combines a Re-ID encoder, a pixelation-based de-identified decoder, and an adversarial module, showcasing a holistic approach to balancing utility and privacy.

The Privacy-Preserved Re-ID Model with Controllable Privacy (2 Stage) introduces differential privacy-based perturbation, allowing controlled privacy and presenting a nuanced strategy for addressing privacy concerns. A comprehensive comparison with existing baselines and state-of-the-art privacy-preserving methods underscores the model’s superior performance in achieving an optimal privacy-utility trade-off.

Qualitative assessments, including feature visualization with t-SNE plots, depict the proposed model’s features as more identity-invariant than baseline features. Visual comparisons of original and reconstructed images further underscore the practical impact of different model components. In essence, the entire model architecture collaboratively addresses privacy concerns while maintaining re-identification performance, as demonstrated through rigorous experimentation and analysis.

In summary, the authors introduce a controllable privacy-preserving model that employs a De-ID decoder and adversarial supervision to enhance privacy in Re-ID features. By applying Differential Privacy to the feature space, the model allows control over identity information based on different privacy budgets. Results demonstrate the model’s effectiveness in balancing utility and privacy. Future work includes improving utility preservation when suppressing encoded PII and exploring the incorporation of perturbed images through the DP mechanism in Re-ID model training.

Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our 36k+ ML SubReddit, 41k+ Facebook Community, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our Telegram Channel

Mahmoud is a PhD researcher in machine learning. He also holds abachelor’s degree in physical science and a master’s degree intelecommunications and networking systems. His current areas ofresearch concern computer vision, stock market prediction and deeplearning. He produced several scientific articles about person re-identification and the study of the robustness and stability of deepnetworks.

🐝 Join the Fastest Growing AI Research Newsletter Read by Researchers from Google + NVIDIA + Meta + Stanford + MIT + Microsoft and many others…



Source link

Tags: BalancingDeepDualStageFrameworkIntroducesLearningPaperPerformancePrivacyPrivacyPreservingReIdentification
Previous Post

Popular mapping techniques for better UX design

Next Post

AWS Supply Chain update: Three new modules supporting upstream activities

Related Posts

AI Compared: Which Assistant Is the Best?
Data Science & ML

AI Compared: Which Assistant Is the Best?

June 10, 2024
5 Machine Learning Models Explained in 5 Minutes
Data Science & ML

5 Machine Learning Models Explained in 5 Minutes

June 7, 2024
Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’
Data Science & ML

Cohere Picks Enterprise AI Needs Over ‘Abstract Concepts Like AGI’

June 7, 2024
How to Learn Data Analytics – Dataquest
Data Science & ML

How to Learn Data Analytics – Dataquest

June 6, 2024
Adobe Terms Of Service Update Privacy Concerns
Data Science & ML

Adobe Terms Of Service Update Privacy Concerns

June 6, 2024
Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart
Data Science & ML

Build RAG applications using Jina Embeddings v2 on Amazon SageMaker JumpStart

June 6, 2024
Next Post
AWS Supply Chain update: Three new modules supporting upstream activities

AWS Supply Chain update: Three new modules supporting upstream activities

‘Smart glove’ can boost hand mobility of stroke patients

'Smart glove' can boost hand mobility of stroke patients

After Iraq, Iran launches drone, missile attacks on militant bases in Pakistan

After Iraq, Iran launches drone, missile attacks on militant bases in Pakistan

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

  • Trending
  • Comments
  • Latest
Is C.AI Down? Here Is What To Do Now

Is C.AI Down? Here Is What To Do Now

January 10, 2024
Porfo: Revolutionizing the Crypto Wallet Landscape

Porfo: Revolutionizing the Crypto Wallet Landscape

October 9, 2023
A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

A Complete Guide to BERT with Code | by Bradney Smith | May, 2024

May 19, 2024
A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

A faster, better way to prevent an AI chatbot from giving toxic responses | MIT News

April 10, 2024
Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

Part 1: ABAP RESTful Application Programming Model (RAP) – Introduction

November 20, 2023
Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

Saginaw HMI Enclosures and Suspension Arm Systems from AutomationDirect – Library.Automationdirect.com

December 6, 2023
Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

Can You Guess What Percentage Of Their Wealth The Rich Keep In Cash?

June 10, 2024
AI Compared: Which Assistant Is the Best?

AI Compared: Which Assistant Is the Best?

June 10, 2024
How insurance companies can use synthetic data to fight bias

How insurance companies can use synthetic data to fight bias

June 10, 2024
5 SLA metrics you should be monitoring

5 SLA metrics you should be monitoring

June 10, 2024
From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

From Low-Level to High-Level Tasks: Scaling Fine-Tuning with the ANDROIDCONTROL Dataset

June 10, 2024
UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

UGRO Capital: Targeting to hit milestone of Rs 20,000 cr loan book in 8-10 quarters: Shachindra Nath

June 10, 2024
Facebook Twitter LinkedIn Pinterest RSS
News PouroverAI

The latest news and updates about the AI Technology and Latest Tech Updates around the world... PouroverAI keeps you in the loop.

CATEGORIES

  • AI Technology
  • Automation
  • Blockchain
  • Business
  • Cloud & Programming
  • Data Science & ML
  • Digital Marketing
  • Front-Tech
  • Uncategorized

SITEMAP

  • Disclaimer
  • Privacy Policy
  • DMCA
  • Cookie Privacy Policy
  • Terms and Conditions
  • Contact us

Copyright © 2023 PouroverAI News.
PouroverAI News

No Result
View All Result
  • Home
  • AI Tech
  • Business
  • Blockchain
  • Data Science & ML
  • Cloud & Programming
  • Automation
  • Front-Tech
  • Marketing

Copyright © 2023 PouroverAI News.
PouroverAI News

Welcome Back!

Login to your account below

Forgotten Password? Sign Up

Create New Account!

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In